Advertisement

International Urogynecology Journal

, Volume 26, Issue 10, pp 1459–1465 | Cite as

Three-dimensional analysis of implanted magnetic-resonance-visible meshes

  • Nikhil Sindhwani
  • Andrew Feola
  • Frederik De Keyzer
  • Filip Claus
  • Geertje Callewaert
  • Iva Urbankova
  • Sebastien Ourselin
  • Jan D’hooge
  • Jan DeprestEmail author
Original Article

Abstract

Objective

Our primary objective was to develop relevant algorithms for quantification of mesh position and 3D shape in magnetic resonance (MR) images.

Methods

In this proof-of-principle study, one patient with severe anterior vaginal wall prolapse was implanted with an MR-visible mesh. High-resolution MR images of the pelvis were acquired 6 weeks and 8 months postsurgery. 3D models were created using semiautomatic segmentation techniques. Conformational changes were recorded quantitatively using part-comparison analysis. An ellipticity measure is proposed to record longitudinal conformational changes in the mesh arms. The surface that is the effective reinforcement provided by the mesh is calculated using a novel methodology. The area of this surface is the effective support area (ESA).

Results

MR-visible mesh was clearly outlined in the images, which allowed us to longitudinally quantify mesh configuration between 6 weeks and 8 months after implantation. No significant changes were found in mesh position, effective support area, conformation of the mesh’s main body, and arm length during the period of observation. Ellipticity profiles show longitudinal conformational changes in posterior arms.

Conclusions

This paper proposes novel methodologies for a systematic 3D assessment of the position and morphology of MR-visible meshes. A novel semiautomatic tool was developed to calculate the effective area of support provided by the mesh, a potentially clinically important parameter.

Keywords

Magnetic Resonance Mesh Prolapse Semiautomatic analysis Graft-related complication Contraction Conformational measurements 

Notes

Acknowledgments

JD is a fundamental clinical researcher for the Fonds Wetenschappelijk Onderzoek Vlaanderen (1.8.012.07). AF is recipient of a Marie Curie Industria-Academia Partnership Programme-postdoctoral grant (251356), and NS of a doctoral grant in the Bip-Upy project (NMP3-LA-2012-310389; FP7), both funded by the European Commission.

Conflicts of interest

Our laboratory has received unconditional translational research grants from Johnson & Johnson Medical, Covidien, Bard, FEG Textiltechnik, American Medical Systems. JD has been consulting for AMS, Johnson & Johnson, and Bard.

Author contributions

Nikhil Sindhwani: project development, methodology development, manuscript writing

Andrew Feola: project development, methodology development

Frederik De Keyzer: data collection

Filip Claus: data collection, project development

Geertje Callewaert: clinical guidance

Iva Urbankova: clinical guidance

Sebastien Ourselin: project development

Jan D’Hooge: project development

Jan Deprest: project development, clinical guidance

Supplementary material

192_2015_2681_MOESM1_ESM.doc (613 kb)
ESM 1 (DOC 613 kb)

References

  1. 1.
    Smith FJ, Holman CDJ, Moorin RE, Tsokos N (2010) Lifetime risk of undergoing surgery for pelvic organ prolapse. Obstet Gynecol 116:1096–100CrossRefPubMedGoogle Scholar
  2. 2.
    Jakus SM, Shapiro A, Hall CD (2008) Biologic and synthetic graft use in pelvic surgery: a review. Obstet Gynecol Surv 63:253–66CrossRefPubMedGoogle Scholar
  3. 3.
    Yurteri-Kaplan LA, Gutman RE (2012) The use of biological materials in urogynecologic reconstruction: a systematic review. Plast Reconstr Surg 130:242S–53SCrossRefPubMedGoogle Scholar
  4. 4.
    Abed H, Rahn DD, Lowenstein L, Balk EM, Clemons JL, Rogers RG (2011) Incidence and management of graft erosion, wound granulation, and dyspareunia following vaginal prolapse repair with graft materials: a systematic review. Int Urogynecol J 22:789–98CrossRefPubMedGoogle Scholar
  5. 5.
    Klosterhalfen B, Klinge U, Schumpelick BHV (2000) Klinik und forschung pathologie traditioneller chirurgischer netze zur hernienreparation nach langzeitimplantation im menschen. Chirurg 71:43–51PubMedGoogle Scholar
  6. 6.
    Jacquetin B, Cosson M (2009) Complications of vaginal mesh: our experience. Int Urogynecol J Pelvic Floor Dysfunct 20:893–96CrossRefPubMedGoogle Scholar
  7. 7.
    Mangera A, Bullock AJ, Chapple CR, Macneil S (2012) Are biomechanical properties predictive of the success of prostheses used in stress urinary incontinence and pelvic organ prolapse? a systematic review. Neurourol Urodyn 31:13–21CrossRefPubMedGoogle Scholar
  8. 8.
    Klosterhalfen B, Hermanns B, Rosch R, Junge K (2003) Biological response to mesh. Eur Surg 35:16–21CrossRefGoogle Scholar
  9. 9.
    Smajda S, Vanormelingen L, Vandewalle G, Ombelet W, de Jonge E, Hinoul P (2005) Translevator posterior intravaginal slingplasty: anatomical landmarks and safety margins. Int Urogynecol J Pelvic Floor Dysfunct 16:364–8CrossRefPubMedGoogle Scholar
  10. 10.
    Hinoul P, Vanormelingen L, Roovers JP, de Jonge E, Smajda S (2007) Anatomical variability in the trajectory of the inside-out transobturator vaginal tape technique (TVT-O). Int Urogynecol J Pelvic Floor Dysfunct 18:1201–6CrossRefPubMedGoogle Scholar
  11. 11.
    Svabík K, Martan A, Masata J, El-Haddad R, Hubka P, Pavlikova M (2011) Ultrasound appearances after mesh implantation–evidence of mesh contraction or folding? Int Urogynecol J 22:529–33CrossRefPubMedGoogle Scholar
  12. 12.
    Palma P, Riccetto C, Fraga R, Miyaoka R, Prando A (2010) Dynamic evaluation of pelvic floor reconstructive surgery using radiopaque meshes and three-dimensional helical CT. Int Braz J Urol 36:209–17CrossRefPubMedGoogle Scholar
  13. 13.
    Schoenmaeckers EJP, van der Valk SBA, van den Hout HW, Raymakers JFTJ, Rakic S (2009) Computed tomographic measurements of mesh shrinkage after laparoscopic ventral incisional hernia repair with an expanded polytetrafluoroethylene mesh. Surg Endosc 23:1620–3CrossRefPubMedGoogle Scholar
  14. 14.
    Kuehnert N, Kraemer NA, Otto J, Donker HCW, Slabu I, Baumann M et al (2011) In vivo MRI visualization of mesh shrinkage using surgical implants loaded with superparamagnetic iron oxides. Surg Endosc 26:1468–75PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Sandaite I, Claus F, Müllen A, De Ridder D, Deprest J (2011) Experimental MRI-contrast imaging of suture and mesh materials with -containing polivinylidenefluoride polymers designed for pelvic floor surgery. Neurourol Urodyn:1114–15Google Scholar
  16. 16.
    Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V (2002) PVDF as a new polymer for the construction of surgical meshes. Biomaterials 23:3487–93CrossRefPubMedGoogle Scholar
  17. 17.
    Sommer T, Friis-Andersen H (2013) DynaMesh® in the repair of laparoscopic ventral hernia: a prospective trial. Hernia 17–5:613–8CrossRefGoogle Scholar
  18. 18.
    Gerullis H, Klosterhalfen B, Borós M, Lammers B, Eimer C, Georgas E et al (2013) IDEAL in meshes for prolapse, urinary incontinence, and hernia repair. Surg Innov 20–5:502–8CrossRefGoogle Scholar
  19. 19.
    Alizai PH, Schmid S, Otto J, Klink CD, Roeth A, Nolting J et al (2014) Biomechanical analyses of prosthetic mesh repair in a hiatal hernia model. J Biomed Mater Res Part B 00B:000–000Google Scholar
  20. 20.
    Shapiro EM, Skrtic S, Koretsky AP (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53:329–38CrossRefPubMedGoogle Scholar
  21. 21.
    Kraemer NA, Donker HCW, Otto J, Hodenius M, Sénégas J, Slabu I et al (2010) A concept for magnetic resonance visualization of surgical textile implants. Invest Radiol 45–8:477–483CrossRefGoogle Scholar
  22. 22.
    Li W, Wu B, Avram AV, Liu C (2012) Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. Neuroimage 59–3:2088–97CrossRefGoogle Scholar
  23. 23.
    Kraemer NA, Donker HCW, Kuehnert N, Otto J, Schrading S, Krombach GA et al (2013) In vivo visualization of polymer-based mesh implants using conventional magnetic resonance imaging and positive-contrast susceptibility imaging. Invest Radiol 48–4:200–5Google Scholar
  24. 24.
    Endo M, Feola A, Sindhwani N, Manodoro S, Vlacil J, Engels AC et al (2014) Mesh Contraction: In-vivo Documentation of Changes in Apparent Surface Area Utilizing Magnetic Resonance Image Visible Meshes in the Rabbit Abdominal Wall Model. Int Urogynecology JGoogle Scholar

Copyright information

© The International Urogynecological Association 2015

Authors and Affiliations

  • Nikhil Sindhwani
    • 1
    • 2
  • Andrew Feola
    • 1
    • 2
  • Frederik De Keyzer
    • 4
  • Filip Claus
    • 4
  • Geertje Callewaert
    • 1
    • 2
  • Iva Urbankova
    • 1
    • 2
  • Sebastien Ourselin
    • 5
  • Jan D’hooge
    • 6
  • Jan Deprest
    • 1
    • 3
    • 7
    Email author
  1. 1.Department of Development and Regeneration, Cluster Organ Systems, Faculty of MedicineKU, LeuvenLeuvenBelgium
  2. 2.Interdepartmental Center for Surgical Technologies, Faculty of MedicineKU LeuvenLeuvenBelgium
  3. 3.Pelvic Floor UnitUniversity Hospitals LeuvenLeuvenBelgium
  4. 4.Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
  5. 5.Centre for Medical Image Computing (CMIC)University College LondonLondonUK
  6. 6.Laboratory on Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, Faculty of MedicineKU LeuvenLeuvenBelgium
  7. 7.Department of Obstetrics and GynaecologyUniversity Hospitals, KU LeuvenLeuvenBelgium

Personalised recommendations