Skip to main content

On the relevance of uniaxial tensile testing of urogynecological prostheses: the effect of displacement rate

Abstract

Introduction and hypothesis

Uniaxial tensile testing is commonly used to calculate values of mechanical properties of urogynecological prostheses used in stress urinary incontinence and pelvic organ prolapse surgery in women. Clinical behavior of these products has been linked to their mechanical properties, hence influencing the clinician’s preference for one brand or another. The objective of this study is to assess the effect of displacement rate used in uniaxial tensile testing on peak load, extension at peak load, and initial stiffness of Prolene® mesh, used as a proxy for urogynecological prostheses.

Methods

Strips of Prolene® mesh measuring 10 × 30 mm were submitted to uniaxial tensile testing at the following rates: 1, 10, 50, 100, and 500 mm/min. Peak load, elongation at peak load, and initial stiffness were computed from load vs displacement curves at all displacement rates. The effect of displacement rate on these parameters was estimated by fitting linear trend lines through the data.

Results

The displacement rate at which uniaxial tensile testing is performed has significant effects on the values of extension at peak load and initial stiffness, but not on the peak load.

Conclusions

When urogynecological prostheses are submitted to uniaxial tensile testing, studies at more than one displacement rate should be performed. More importantly, these displacement rates should be within the range of applicability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Fong ED, Nitti VW (2010) Review article: mid-urethral synthetic slings for female stress urinary incontinence. BJU Int 106:596–608

    PubMed  Article  Google Scholar 

  2. Amid PK (1997) Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1:15–21

    Article  Google Scholar 

  3. Thüroff JW, Abrams P, Andersson KE et al (2011) EAU guidelines on urinary incontinence. Eur Urol 59:387–400

    PubMed  Article  Google Scholar 

  4. Olsen AL, Smith VJ, Bergstrom JO et al (1997) Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol 89:501–506

    PubMed  Article  CAS  Google Scholar 

  5. Julian TM (1996) The efficacy of Marlex mesh in the repair of severe, recurrent vaginal prolapse of the anterior midvaginal wall. Am J Obstet Gynecol 175:1472–1475

    PubMed  Article  CAS  Google Scholar 

  6. Maher CM, Feiner B, Baessler K, Glazener CM (2011) Surgical management of pelvic organ prolapse in women: the updated summary version Cochrane review. Int Urogynecol J 22:1445–1457

    PubMed  Article  Google Scholar 

  7. Jha S, Moran P (2011) The UK national prolapse survey: 5 years on. Int Urogynecol J 22:517–528

    PubMed  Article  Google Scholar 

  8. FDA Safety Communication (2011) UPDATE on Serious Complications Associated with Transvaginal Placement of Surgical Mesh for Pelvic Organ Prolapse. http://www.fda.gov/MedicalDevices/Safety/AlertandNotices/ucm262435.htm

  9. Krause H, Bennett M, Forwood M, Goh J (2008) Biomechanical properties of raw meshes used in pelvic floor reconstruction. Int Urogynecol J Pelvic Floor Dysfunct 19:1677–1681

    PubMed  Article  Google Scholar 

  10. Afonso JS, Martins PALS, Girao MJBC (2008) Mechanical properties of polypropylene mesh used in pelvic floor repair. Int Urogynecol J Pelvic Floor Dysfunct 19:375–980

    PubMed  Article  CAS  Google Scholar 

  11. Shepherd JP, Feola AJ, Abramowitch SD, Moalli PA (2012) Uniaxial biomechanical properties of seven different vaginally implanted meshes for pelvic organ prolapse. Int Urogynecol J 23:613–620

    PubMed  Article  Google Scholar 

  12. Abed H, Rahn DD, Lowenstein L, Balk EM, Clemons JL, Rogers RG et al (2011) Incidence and management of graft erosion, wound granulation, and dyspareunia following vaginal prolapse repair with graft materials: a systematic review. Int Urogynecol J 22:789–798

    PubMed  Article  Google Scholar 

  13. Cobb WS, Peindl RM, Zerey M, Carbonell AM, Heniford BT (2009) Mesh terminology 101. Hernia 13:1–6

    PubMed  Article  CAS  Google Scholar 

  14. Bazi TM, Hamade RF, Abdallah Hajj Hussein I, Abi Nader K, Jurjus A (2007) Polypropylene midurethral tapes do not have similar biologic and biomechanical performance in the rat. Eur Urol 51:1364–1375

    PubMed  Article  Google Scholar 

  15. Moalli PA, Papas N, Menefee S, Albo M, Meyn L, Abramowitch SD (2008) Tensile properties of five commonly used mid-urethral slings relative to the TVT. Int Urogynecol J Pelvic Floor Dysfunct 19:655–663

    PubMed  Article  Google Scholar 

  16. Ozog Y, Konstantinovic ML, Werbrouck E, De Ridder D, Edoardo M, Deprest J (2011) Shrinkage and biomechanical evaluation of lightweight synthetics in a rabbit model for primary fascial repair. Int Urogynecol J 22:1099–1108

    PubMed  Article  Google Scholar 

  17. Jones KA, Feola A, Meyn L, Abramowitch SD, Moalli PA (2009) Tensile properties of commonly used prolapse meshes. Int Urogynecol J Pelvic Floor Dysfunct 20:847–853

    PubMed  Article  Google Scholar 

  18. Dietz HP, Vancaillie P, Svehla M, Walsh W, Steensma AB, Vancaillie TG (2003) Mechanical properties of urogynecologic implant materials. Int Urogynecol J Pelvic Floor Dysfunct 14:239–243

    PubMed  Article  CAS  Google Scholar 

  19. Krause HG, Goh JT (2009) Biomechanical properties of graft materials employed for pelvic floor reconstructive surgeries. Curr Opin Obstet Gynecol 21:419–423

    PubMed  Article  Google Scholar 

  20. Mangera A, Bullock AJ, Chapple CR, Macneil S (2012) Are biomechanical properties predictive of the success of prostheses used in stress urinary incontinence and pelvic organ prolapse? A systematic review. Neurourol Urodyn 31:13–21

    PubMed  Article  Google Scholar 

  21. Mistrangelo E, Mancuso S, Nadalini C, Lijoi D, Costantini L (2007) Rising use of synthetic mesh in transvaginal pelvic reconstructive surgery: a review of the risk of vaginal erosion. J Minim Invasive Gynecol 14:564–1469

    PubMed  Article  Google Scholar 

  22. Lovegrove Jones RC, Peng Q, Stokes M, Humphrey VF, Payne C, Constantinou CE (2010) Mechanisms of pelvic floor muscle function and the effect on the urethra during a cough. Eur Urol 57:1101–1110

    PubMed  Article  Google Scholar 

  23. Miller JM, Perucchini D, Carchidi LT, DeLancey JO, Ashton-Miller J (2001) Pelvic floor muscle contraction during a cough and decreased vesical neck mobility. Obstet Gynecol 97:255–560

    PubMed  Article  CAS  Google Scholar 

  24. Rubod C, Boukerrou M, Brieu M, Dubois P, Cosson M (2007) Biomechanical properties of vaginal tissue. Part 1: new experimental protocol. J Urol 178:320–325

    PubMed  Article  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Bazi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bazi, T., Ammouri, A.H. & Hamade, R.F. On the relevance of uniaxial tensile testing of urogynecological prostheses: the effect of displacement rate. Int Urogynecol J 24, 161–167 (2013). https://doi.org/10.1007/s00192-012-1815-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-012-1815-y

Keywords

  • Mechanical properties
  • Mesh
  • Midurethral tape
  • Pelvic organ prolapse
  • Uniaxial tensile testing
  • Stress urinary incontinence