A standardized description of graft-containing meshes and recommended steps before the introduction of medical devices for prolapse surgery

Consensus of the 2nd IUGA Grafts Roundtable: Optimizing Safety and Appropriateness of Graft Use in Transvaginal Pelvic Reconstructive Surgery


Over the past decade, a huge number of new implants and ancillary devices have been introduced to the market. Most of these have become clinically available with little or no clinical data or research. This is a less-than-ideal situation, and this subgroup of the ad hoc IUGA roundtable conference wants to open the discussion to change this, by proposing a pragmatic minimum clearance track for new products being introduced to the market. It consists of an accurate and more standardized product description, data on the biological properties gathered in animal experiments, anatomical cadaveric studies, and upfront clinical studies followed by a compulsory registry on the first 1,000 patients implanted. Ideally, manufacturers should support well-designed prospective (randomized) clinical trials that can support the claimed benefits of the new product.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Dhruva SS, Bero LA, Redberg RF (2009) Strength of study evidence examined by the FDA in premarket approval of cardiovascular devices. JAMA 302(24):2679–2685

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    FDA US Food and Drug Administration. MAUDE—manufacturer and user facility device experience. Available at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/search.CFM

  3. 3.

    Wall LL, Brown D (2010) The perils of commercially driven surgical innovation. Am J Obstet Gynecol 202(1):30.e1–30.e4

    Google Scholar 

  4. 4.

    Reitsma AM, Moreno JD (2005) Ethics of innovative surgery: US surgeons’ definitions, knowledge, and attitudes. J Am Coll Surg 200(1):103–110

    PubMed  Article  Google Scholar 

  5. 5.

    Ostergard DR (2007) Lessons from the past: directions for the future. Do new marketed surgical procedures and grafts produce ethical, personal liability, and legal concerns for physicians? Int Urogynecol J Pelvic Floor Dysfunct 18(6):591–598

    PubMed  Article  Google Scholar 

  6. 6.

    Morreim H, Mack MJ, Sade RM (2006) Surgical innovation: too risky to remain unregulated? Ann Thorac Surg 82(6):1957–1965

    PubMed  Article  Google Scholar 

  7. 7.

    Hinoul P, Goossens A, Roovers JP (2010) Factors determining the adoption of innovative needle suspension techniques with mesh to treat urogenital prolapse: a conjoint analysis study. Eur J Obstet Gynecol Reprod Biol 151(2):212–216

    PubMed  Article  Google Scholar 

  8. 8.

    Maisel WH (2004) Medical device regulation: an introduction for the practicing physician. Ann Intern Med 140(4):296–302

    PubMed  Google Scholar 

  9. 9.

    Cobb WS et al (2009) Mesh terminology 101. Hernia 13(1):1–6

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Haylen BT et al (2011) An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint terminology and classification of the complications related directly to the insertion of prostheses (meshes, implants, tapes) & grafts in female pelvic floor surgery. Int Urogynecol J Pelvic Floor Dysfunct 22(1):3–15

    Article  Google Scholar 

  11. 11.

    Palma P et al (2010) Dynamic evaluation of pelvic floor reconstructive surgery using radiopaque meshes and three-dimensional helical CT. Int Braz J Urol 36(2):209–214, discussion 215–217

    PubMed  Article  Google Scholar 

  12. 12.

    Kramer NA et al (2010) A concept for magnetic resonance visualization of surgical textile implants. Invest Radiol 45(8):477–483

    PubMed  Article  Google Scholar 

  13. 13.

    Deprest J et al (2006) The biology behind fascial defects and the use of implants in pelvic organ prolapse repair. Int Urogynecol J Pelvic Floor Dysfunct 17(Suppl 1):S16–S25

    PubMed  Google Scholar 

  14. 14.

    Besim H et al (2002) Prevention of intraabdominal adhesions produced by polypropylene mesh. Eur Surg Res 34(3):239–243

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Alponat A et al (1997) Effects of physical barriers in prevention of adhesions: an incisional hernia model in rats. J Surg Res 68(2):126–132

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Bellon JM et al (1998) Long-term evaluation of the behavior of a polytetrafluoroethylene microprosthesis in the rat iliac artery: myointimal regression. J Reconstr Microsurg 14(4):251–258

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Trabuco EC et al (2007) Effect of host response (incorporation, encapsulation, mixed incorporation and encapsulation, or resorption) on the tensile strength of graft-reinforced repair in the rat ventral hernia model. Am J Obstet Gynecol 197(6):638.e1–638.e6

    Google Scholar 

  18. 18.

    Konstantinovic ML et al (2007) Tensile strength and host response towards different polypropylene implant materials used for augmentation of fascial repair in a rat model. Int Urogynecol J Pelvic Floor Dysfunct 18(6):619–626

    PubMed  Article  Google Scholar 

  19. 19.

    Ozog Y et al (2009) Porous acellular porcine dermal collagen implants to repair fascial defects in a rat model: biomechanical evaluation up to 180 days. Gynecol Obstet Invest 68(3):205–212

    PubMed  Article  Google Scholar 

  20. 20.

    Zheng F et al (2005) Improved surgical outcome by modification of porcine dermal collagen implant in abdominal wall reconstruction in rats. Neurourol Urodyn 24(4):362–368

    PubMed  Article  Google Scholar 

  21. 21.

    de Tayrac R, Letouzey V (2011) Basic science and clinical aspects of mesh infection in pelvic floor reconstructive surgery. Int Urogynecol J Pelvic Floor Dysfunct 22(7):775–780

    Article  Google Scholar 

  22. 22.

    Mamy L et al (2011) Correlation between shrinkage and infection of implanted synthetic meshes using an animal model of mesh infection. Int Urogynecol J Pelvic Floor Dysfunct 22(1):47–52

    Article  Google Scholar 

  23. 23.

    Junge K et al (2005) Gentamicin supplementation of polyvinylidenfluoride mesh materials for infection prophylaxis. Biomaterials 26(7):787–793

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Ozog Y, Konstantinovic ML, Werbrouck E, De Ridder D, Mazza E, Deprest J (2011) Persistence of polypropylene mesh anisotropy after implantation: an experimental study. BJOG 118(10):1180–1185. doi:10.1111/j.1471-0528.2011.03018, Epub June 14 2011

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Ozog Y, Konstantinovic ML, Werbrouck E, De Ridder D, Edoardo M, Deprest J (2011) Shrinkage and biomechanical evaluation of lightweight synthetics in a rabbit model for primary fascial repair. Int Urogynecol J 22(9):1099–1108, Epub 2011 May 12

    PubMed  Article  Google Scholar 

  26. 26.

    Claerhout F et al (2008) Fate of collagen-based implants used in pelvic floor surgery: a 2-year follow-up study in a rabbit model. Am J Obstet Gynecol 198(1):94.e1–94.e6

    Google Scholar 

  27. 27.

    Abramov Y et al (2006) Biomechanical characterization of vaginal versus abdominal surgical wound healing in the rabbit. Am J Obstet Gynecol 194(5):1472–1477

    PubMed  Article  Google Scholar 

  28. 28.

    Abramov Y et al (2007) Histologic characterization of vaginal vs. abdominal surgical wound healing in a rabbit model. Wound Repair Regen 15(1):80–86

    PubMed  Article  Google Scholar 

  29. 29.

    Hilger WS et al (2006) Histological and biomechanical evaluation of implanted graft materials in a rabbit vaginal and abdominal model. Am J Obstet Gynecol 195(6):1826–1831

    PubMed  Article  Google Scholar 

  30. 30.

    Pierce LM et al (2009) Biomechanical properties of synthetic and biologic graft materials following long-term implantation in the rabbit abdomen and vagina. Am J Obstet Gynecol 200(5):549.e1–549.e8

    Google Scholar 

  31. 31.

    Pierce LM et al (2009) Long-term histologic response to synthetic and biologic graft materials implanted in the vagina and abdomen of a rabbit model. Am J Obstet Gynecol 200(5):546.e1–546.e8

    Google Scholar 

  32. 32.

    Walter AJ et al (2003) Changes in tensile strength of cadaveric human fascia lata after implantation in a rabbit vagina model. J Urol 169(5):1907–1910, discussion 1910

    PubMed  Article  Google Scholar 

  33. 33.

    Walter AJ et al (2006) Histologic evaluation of human cadaveric fascia lata in a rabbit vagina model. Int Urogynecol J Pelvic Floor Dysfunct 17(2):136–142

    PubMed  Article  Google Scholar 

  34. 34.

    Huffaker RK et al (2008) Histologic response of porcine collagen-coated and uncoated polypropylene grafts in a rabbit vagina model. Am J Obstet Gynecol 198(5):582.e1–582.e7

    Google Scholar 

  35. 35.

    Higgins EW et al (2009) Effect of estrogen replacement on the histologic response to polypropylene mesh implanted in the rabbit vagina model. Am J Obstet Gynecol 201(5):505.e1–505.e9

    Google Scholar 

  36. 36.

    Rubod C et al (2007) Biomechanical properties of vaginal tissue. Part 1: new experimental protocol. J Urol 178(1):320–325, discussion 325

    PubMed  Article  Google Scholar 

  37. 37.

    de Tayrac R, Alves A, Therin M (2007) Collagen-coated vs noncoated low-weight polypropylene meshes in a sheep model for vaginal surgery. A pilot study. Int Urogynecol J Pelvic Floor Dysfunct 18(5):513–520

    PubMed  Article  Google Scholar 

  38. 38.

    Abramowitch SD et al (2009) Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur J Obstet Gynecol Reprod Biol 144(Suppl 1):S146–S158

    PubMed  Article  Google Scholar 

  39. 39.

    Epstein LB, Graham CA, Heit MH (2008) Impact of sacral colpopexy on in vivo vaginal biomechanical properties. Am J Obstet Gynecol 199(6):664.e1–664.e6

    Google Scholar 

  40. 40.

    Epstein LB, Graham CA, Heit MH (2008) Correlation between vaginal stiffness index and pelvic floor disorder quality-of-life scales. Int Urogynecol J Pelvic Floor Dysfunct 19(7):1013–1018

    PubMed  Article  Google Scholar 

  41. 41.

    Epstein LB, Graham CA, Heit MH (2007) Systemic and vaginal biomechanical properties of women with normal vaginal support and pelvic organ prolapse. Am J Obstet Gynecol 197(2):165.e1–165.e6

    Google Scholar 

  42. 42.

    Feola A et al (2011) Impact of pregnancy and vaginal delivery on the passive and active mechanics of the rat vagina. Ann Biomed Eng 39(1):549–558

    PubMed  Article  Google Scholar 

  43. 43.

    Zheng F et al (2007) Cytokine production following experimental implantation of xenogenic dermal collagen and polypropylene grafts in mice. Neurourol Urodyn 26(2):280–289

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Movat HZ (1955) Demonstration of all connective tissue elements in a single section; pentachrome stains. AMA Arch Pathol 60(3):289–295

    PubMed  CAS  Google Scholar 

  45. 45.

    Montes GS, Junqueira LC (1991) The use of the Picrosirius-polarization method for the study of the biopathology of collagen. Mem Inst Oswaldo Cruz 86(Suppl 3):1–11

    PubMed  Article  Google Scholar 

  46. 46.

    Clave A et al (2010) Polypropylene as a reinforcement in pelvic surgery is not inert: comparative analysis of 100 explants. Int Urogynecol J Pelvic Floor Dysfunct 21(3):261–270

    Article  Google Scholar 

  47. 47.

    Slack M et al (2006) In vivo comparison of suburethral sling materials. Int Urogynecol J Pelvic Floor Dysfunct 17(2):106–110

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Siegel AL et al (2005) High incidence of vaginal mesh extrusion using the intravaginal slingplasty sling. J Urol 174(4 Pt 1):1308–1311

    PubMed  Article  Google Scholar 

  49. 49.

    Yamada BS et al (2006) High rate of vaginal erosions associated with the Mentor ObTape. J Urol 176(2):651–654, discussion 654

    PubMed  Article  Google Scholar 

  50. 50.

    Glowacki CA, Wall LL (2000) Bone anchors in urogynecology. Clin Obstet Gynecol 43(3):659–669

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    FDA enforcement report (Recall notice of microvasive urology products ProteGen collagen impregnated sling and Vesica sling kits with ProteGen). 17 March 1999

  52. 52.

    Kobashi KC et al (1999) Erosion of woven polyester pubovaginal sling. J Urol 162(6):2070–2072

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Hinoul P et al (2011) An anatomic comparison of the original versus a modified inside-out transobturator procedure. Int Urogynecol J 22(8):997–1004

    PubMed  Article  Google Scholar 

  54. 54.

    Hinoul P et al (2007) Anatomical variability in the trajectory of the inside-out transobturator vaginal tape technique (TVT-O). Int Urogynecol J Pelvic Floor Dysfunct 18(10):1201–1206

    PubMed  Article  Google Scholar 

  55. 55.

    Spinosa JP, Dubuis PY, Riederer BM (2007) Transobturator surgery for female stress incontinence: a comparative anatomical study of outside-in vs inside-out techniques. BJU Int 100(5):1097–1102

    PubMed  Google Scholar 

  56. 56.

    Reisenauer C et al (2007) Anatomical conditions for pelvic floor reconstruction with polypropylene implant and its application for the treatment of vaginal prolapse. Eur J Obstet Gynecol Reprod Biol 131(2):214–225

    PubMed  Article  Google Scholar 

  57. 57.

    Reisenauer C et al (2010) Anatomic study of prolapse surgery with nonanchored mesh and a vaginal support device. Am J Obstet Gynecol 203(6):590.e1–590.e7

    Google Scholar 

  58. 58.

    Ward K, Hilton P (2002) Prospective multicentre randomised trial of tension-free vaginal tape and colposuspension as primary treatment for stress incontinence. BMJ 325(7355):67

    PubMed  Article  Google Scholar 

  59. 59.

    Tincello DG et al (2009) Colposuspension or TVT with anterior repair for urinary incontinence and prolapse: results of and lessons from a pilot randomised patient-preference study (CARPET 1). BJOG 116(13):1809–1814

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240(2):205–213

    PubMed  Article  Google Scholar 

  61. 61.

    (2002) Directive 2001/20/EC of the European Parliament and of the Council of 4 April 2001 on the approximation of the laws, regulations and administrative provisions of the Member States relating to the implementation of good clinical practice in the conduct of clinical trials on medicinal products for human use. Med Etika Bioet 9:12–19

  62. 62.

    Bollapragada SS, Norrie JD, Norman JE (2007) Review of new regulations for the conduct of clinical trials of investigational medicinal products. BJOG 114(8):917–921

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    World Health Organization (2003) Medical device regulations. World Health Organization, Geneva

    Google Scholar 

  64. 64.

    Bafghi A et al (2005) Multifilament polypropylene mesh for urinary incontinence: 10 cases of infections requiring removal of the sling. BJOG 112(3):376–378

    PubMed  Article  Google Scholar 

  65. 65.

    Abdel-Fattah M et al (2006) How common are tape erosions? A comparison of two versions of the transobturator tension-free vaginal tape procedure. BJU Int 98(3):594–598

    PubMed  Article  Google Scholar 

  66. 66.

    Sivanesan K, Abdel-Fattah M, Tierney J (2007) Perineal cellulitis and persistent vaginal erosion after transobturator tape (Obtape)—case report and review of the literature. Int Urogynecol J Pelvic Floor Dysfunct 18(2):219–221

    PubMed  Google Scholar 

  67. 67.

    Chai JY (2000) Medical device regulation in the United States and the European Union: a comparative study. Food Drug Law J 55(1):57–80

    PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

Mark Slack is a consultant for Johnson and Johnson and Boston Scientific. Jan Deprest is or was a paid speaker and consultant for Ethicon, AMS, and Bard and has received research grants from Ethicon, FEG Textiltechnik, AMS, and Bard. Mauro Cervigni was a consultant for Johnson and Johnson, Bard, and Medtronic. Donald Ostergard was a consultant for AMS.

Author information



Corresponding author

Correspondence to Jan Deprest.

Additional information

Data were presented at the 2nd IUGA Grafts Roundtable June 2010.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Slack, M., Ostergard, D., Cervigni, M. et al. A standardized description of graft-containing meshes and recommended steps before the introduction of medical devices for prolapse surgery. Int Urogynecol J 23, 15–26 (2012). https://doi.org/10.1007/s00192-012-1678-2

Download citation


  • Graft
  • Mesh
  • Vaginal prolapse
  • Pelvic organ prolapse
  • Safety
  • Market
  • Implantable material
  • New product
  • Biological property
  • Prospective randomized trial