International Urogynecology Journal

, Volume 23, Supplement 1, pp 15–26 | Cite as

A standardized description of graft-containing meshes and recommended steps before the introduction of medical devices for prolapse surgery

Consensus of the 2nd IUGA Grafts Roundtable: Optimizing Safety and Appropriateness of Graft Use in Transvaginal Pelvic Reconstructive Surgery
  • Mark Slack
  • Donald Ostergard
  • Mauro Cervigni
  • Jan DeprestEmail author
IUGA Grafts Roundtable 2010


Over the past decade, a huge number of new implants and ancillary devices have been introduced to the market. Most of these have become clinically available with little or no clinical data or research. This is a less-than-ideal situation, and this subgroup of the ad hoc IUGA roundtable conference wants to open the discussion to change this, by proposing a pragmatic minimum clearance track for new products being introduced to the market. It consists of an accurate and more standardized product description, data on the biological properties gathered in animal experiments, anatomical cadaveric studies, and upfront clinical studies followed by a compulsory registry on the first 1,000 patients implanted. Ideally, manufacturers should support well-designed prospective (randomized) clinical trials that can support the claimed benefits of the new product.


Graft Mesh Vaginal prolapse Pelvic organ prolapse Safety Market Implantable material New product Biological property Prospective randomized trial 


Conflicts of interest

Mark Slack is a consultant for Johnson and Johnson and Boston Scientific. Jan Deprest is or was a paid speaker and consultant for Ethicon, AMS, and Bard and has received research grants from Ethicon, FEG Textiltechnik, AMS, and Bard. Mauro Cervigni was a consultant for Johnson and Johnson, Bard, and Medtronic. Donald Ostergard was a consultant for AMS.


  1. 1.
    Dhruva SS, Bero LA, Redberg RF (2009) Strength of study evidence examined by the FDA in premarket approval of cardiovascular devices. JAMA 302(24):2679–2685PubMedCrossRefGoogle Scholar
  2. 2.
    FDA US Food and Drug Administration. MAUDE—manufacturer and user facility device experience. Available at
  3. 3.
    Wall LL, Brown D (2010) The perils of commercially driven surgical innovation. Am J Obstet Gynecol 202(1):30.e1–30.e4Google Scholar
  4. 4.
    Reitsma AM, Moreno JD (2005) Ethics of innovative surgery: US surgeons’ definitions, knowledge, and attitudes. J Am Coll Surg 200(1):103–110PubMedCrossRefGoogle Scholar
  5. 5.
    Ostergard DR (2007) Lessons from the past: directions for the future. Do new marketed surgical procedures and grafts produce ethical, personal liability, and legal concerns for physicians? Int Urogynecol J Pelvic Floor Dysfunct 18(6):591–598PubMedCrossRefGoogle Scholar
  6. 6.
    Morreim H, Mack MJ, Sade RM (2006) Surgical innovation: too risky to remain unregulated? Ann Thorac Surg 82(6):1957–1965PubMedCrossRefGoogle Scholar
  7. 7.
    Hinoul P, Goossens A, Roovers JP (2010) Factors determining the adoption of innovative needle suspension techniques with mesh to treat urogenital prolapse: a conjoint analysis study. Eur J Obstet Gynecol Reprod Biol 151(2):212–216PubMedCrossRefGoogle Scholar
  8. 8.
    Maisel WH (2004) Medical device regulation: an introduction for the practicing physician. Ann Intern Med 140(4):296–302PubMedGoogle Scholar
  9. 9.
    Cobb WS et al (2009) Mesh terminology 101. Hernia 13(1):1–6PubMedCrossRefGoogle Scholar
  10. 10.
    Haylen BT et al (2011) An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint terminology and classification of the complications related directly to the insertion of prostheses (meshes, implants, tapes) & grafts in female pelvic floor surgery. Int Urogynecol J Pelvic Floor Dysfunct 22(1):3–15CrossRefGoogle Scholar
  11. 11.
    Palma P et al (2010) Dynamic evaluation of pelvic floor reconstructive surgery using radiopaque meshes and three-dimensional helical CT. Int Braz J Urol 36(2):209–214, discussion 215–217PubMedCrossRefGoogle Scholar
  12. 12.
    Kramer NA et al (2010) A concept for magnetic resonance visualization of surgical textile implants. Invest Radiol 45(8):477–483PubMedCrossRefGoogle Scholar
  13. 13.
    Deprest J et al (2006) The biology behind fascial defects and the use of implants in pelvic organ prolapse repair. Int Urogynecol J Pelvic Floor Dysfunct 17(Suppl 1):S16–S25PubMedGoogle Scholar
  14. 14.
    Besim H et al (2002) Prevention of intraabdominal adhesions produced by polypropylene mesh. Eur Surg Res 34(3):239–243PubMedCrossRefGoogle Scholar
  15. 15.
    Alponat A et al (1997) Effects of physical barriers in prevention of adhesions: an incisional hernia model in rats. J Surg Res 68(2):126–132PubMedCrossRefGoogle Scholar
  16. 16.
    Bellon JM et al (1998) Long-term evaluation of the behavior of a polytetrafluoroethylene microprosthesis in the rat iliac artery: myointimal regression. J Reconstr Microsurg 14(4):251–258PubMedCrossRefGoogle Scholar
  17. 17.
    Trabuco EC et al (2007) Effect of host response (incorporation, encapsulation, mixed incorporation and encapsulation, or resorption) on the tensile strength of graft-reinforced repair in the rat ventral hernia model. Am J Obstet Gynecol 197(6):638.e1–638.e6Google Scholar
  18. 18.
    Konstantinovic ML et al (2007) Tensile strength and host response towards different polypropylene implant materials used for augmentation of fascial repair in a rat model. Int Urogynecol J Pelvic Floor Dysfunct 18(6):619–626PubMedCrossRefGoogle Scholar
  19. 19.
    Ozog Y et al (2009) Porous acellular porcine dermal collagen implants to repair fascial defects in a rat model: biomechanical evaluation up to 180 days. Gynecol Obstet Invest 68(3):205–212PubMedCrossRefGoogle Scholar
  20. 20.
    Zheng F et al (2005) Improved surgical outcome by modification of porcine dermal collagen implant in abdominal wall reconstruction in rats. Neurourol Urodyn 24(4):362–368PubMedCrossRefGoogle Scholar
  21. 21.
    de Tayrac R, Letouzey V (2011) Basic science and clinical aspects of mesh infection in pelvic floor reconstructive surgery. Int Urogynecol J Pelvic Floor Dysfunct 22(7):775–780CrossRefGoogle Scholar
  22. 22.
    Mamy L et al (2011) Correlation between shrinkage and infection of implanted synthetic meshes using an animal model of mesh infection. Int Urogynecol J Pelvic Floor Dysfunct 22(1):47–52CrossRefGoogle Scholar
  23. 23.
    Junge K et al (2005) Gentamicin supplementation of polyvinylidenfluoride mesh materials for infection prophylaxis. Biomaterials 26(7):787–793PubMedCrossRefGoogle Scholar
  24. 24.
    Ozog Y, Konstantinovic ML, Werbrouck E, De Ridder D, Mazza E, Deprest J (2011) Persistence of polypropylene mesh anisotropy after implantation: an experimental study. BJOG 118(10):1180–1185. doi: 10.1111/j.1471-0528.2011.03018, Epub June 14 2011PubMedCrossRefGoogle Scholar
  25. 25.
    Ozog Y, Konstantinovic ML, Werbrouck E, De Ridder D, Edoardo M, Deprest J (2011) Shrinkage and biomechanical evaluation of lightweight synthetics in a rabbit model for primary fascial repair. Int Urogynecol J 22(9):1099–1108, Epub 2011 May 12PubMedCrossRefGoogle Scholar
  26. 26.
    Claerhout F et al (2008) Fate of collagen-based implants used in pelvic floor surgery: a 2-year follow-up study in a rabbit model. Am J Obstet Gynecol 198(1):94.e1–94.e6Google Scholar
  27. 27.
    Abramov Y et al (2006) Biomechanical characterization of vaginal versus abdominal surgical wound healing in the rabbit. Am J Obstet Gynecol 194(5):1472–1477PubMedCrossRefGoogle Scholar
  28. 28.
    Abramov Y et al (2007) Histologic characterization of vaginal vs. abdominal surgical wound healing in a rabbit model. Wound Repair Regen 15(1):80–86PubMedCrossRefGoogle Scholar
  29. 29.
    Hilger WS et al (2006) Histological and biomechanical evaluation of implanted graft materials in a rabbit vaginal and abdominal model. Am J Obstet Gynecol 195(6):1826–1831PubMedCrossRefGoogle Scholar
  30. 30.
    Pierce LM et al (2009) Biomechanical properties of synthetic and biologic graft materials following long-term implantation in the rabbit abdomen and vagina. Am J Obstet Gynecol 200(5):549.e1–549.e8Google Scholar
  31. 31.
    Pierce LM et al (2009) Long-term histologic response to synthetic and biologic graft materials implanted in the vagina and abdomen of a rabbit model. Am J Obstet Gynecol 200(5):546.e1–546.e8Google Scholar
  32. 32.
    Walter AJ et al (2003) Changes in tensile strength of cadaveric human fascia lata after implantation in a rabbit vagina model. J Urol 169(5):1907–1910, discussion 1910PubMedCrossRefGoogle Scholar
  33. 33.
    Walter AJ et al (2006) Histologic evaluation of human cadaveric fascia lata in a rabbit vagina model. Int Urogynecol J Pelvic Floor Dysfunct 17(2):136–142PubMedCrossRefGoogle Scholar
  34. 34.
    Huffaker RK et al (2008) Histologic response of porcine collagen-coated and uncoated polypropylene grafts in a rabbit vagina model. Am J Obstet Gynecol 198(5):582.e1–582.e7Google Scholar
  35. 35.
    Higgins EW et al (2009) Effect of estrogen replacement on the histologic response to polypropylene mesh implanted in the rabbit vagina model. Am J Obstet Gynecol 201(5):505.e1–505.e9Google Scholar
  36. 36.
    Rubod C et al (2007) Biomechanical properties of vaginal tissue. Part 1: new experimental protocol. J Urol 178(1):320–325, discussion 325PubMedCrossRefGoogle Scholar
  37. 37.
    de Tayrac R, Alves A, Therin M (2007) Collagen-coated vs noncoated low-weight polypropylene meshes in a sheep model for vaginal surgery. A pilot study. Int Urogynecol J Pelvic Floor Dysfunct 18(5):513–520PubMedCrossRefGoogle Scholar
  38. 38.
    Abramowitch SD et al (2009) Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur J Obstet Gynecol Reprod Biol 144(Suppl 1):S146–S158PubMedCrossRefGoogle Scholar
  39. 39.
    Epstein LB, Graham CA, Heit MH (2008) Impact of sacral colpopexy on in vivo vaginal biomechanical properties. Am J Obstet Gynecol 199(6):664.e1–664.e6Google Scholar
  40. 40.
    Epstein LB, Graham CA, Heit MH (2008) Correlation between vaginal stiffness index and pelvic floor disorder quality-of-life scales. Int Urogynecol J Pelvic Floor Dysfunct 19(7):1013–1018PubMedCrossRefGoogle Scholar
  41. 41.
    Epstein LB, Graham CA, Heit MH (2007) Systemic and vaginal biomechanical properties of women with normal vaginal support and pelvic organ prolapse. Am J Obstet Gynecol 197(2):165.e1–165.e6Google Scholar
  42. 42.
    Feola A et al (2011) Impact of pregnancy and vaginal delivery on the passive and active mechanics of the rat vagina. Ann Biomed Eng 39(1):549–558PubMedCrossRefGoogle Scholar
  43. 43.
    Zheng F et al (2007) Cytokine production following experimental implantation of xenogenic dermal collagen and polypropylene grafts in mice. Neurourol Urodyn 26(2):280–289PubMedCrossRefGoogle Scholar
  44. 44.
    Movat HZ (1955) Demonstration of all connective tissue elements in a single section; pentachrome stains. AMA Arch Pathol 60(3):289–295PubMedGoogle Scholar
  45. 45.
    Montes GS, Junqueira LC (1991) The use of the Picrosirius-polarization method for the study of the biopathology of collagen. Mem Inst Oswaldo Cruz 86(Suppl 3):1–11PubMedCrossRefGoogle Scholar
  46. 46.
    Clave A et al (2010) Polypropylene as a reinforcement in pelvic surgery is not inert: comparative analysis of 100 explants. Int Urogynecol J Pelvic Floor Dysfunct 21(3):261–270CrossRefGoogle Scholar
  47. 47.
    Slack M et al (2006) In vivo comparison of suburethral sling materials. Int Urogynecol J Pelvic Floor Dysfunct 17(2):106–110PubMedCrossRefGoogle Scholar
  48. 48.
    Siegel AL et al (2005) High incidence of vaginal mesh extrusion using the intravaginal slingplasty sling. J Urol 174(4 Pt 1):1308–1311PubMedCrossRefGoogle Scholar
  49. 49.
    Yamada BS et al (2006) High rate of vaginal erosions associated with the Mentor ObTape. J Urol 176(2):651–654, discussion 654PubMedCrossRefGoogle Scholar
  50. 50.
    Glowacki CA, Wall LL (2000) Bone anchors in urogynecology. Clin Obstet Gynecol 43(3):659–669PubMedCrossRefGoogle Scholar
  51. 51.
    FDA enforcement report (Recall notice of microvasive urology products ProteGen collagen impregnated sling and Vesica sling kits with ProteGen). 17 March 1999Google Scholar
  52. 52.
    Kobashi KC et al (1999) Erosion of woven polyester pubovaginal sling. J Urol 162(6):2070–2072PubMedCrossRefGoogle Scholar
  53. 53.
    Hinoul P et al (2011) An anatomic comparison of the original versus a modified inside-out transobturator procedure. Int Urogynecol J 22(8):997–1004PubMedCrossRefGoogle Scholar
  54. 54.
    Hinoul P et al (2007) Anatomical variability in the trajectory of the inside-out transobturator vaginal tape technique (TVT-O). Int Urogynecol J Pelvic Floor Dysfunct 18(10):1201–1206PubMedCrossRefGoogle Scholar
  55. 55.
    Spinosa JP, Dubuis PY, Riederer BM (2007) Transobturator surgery for female stress incontinence: a comparative anatomical study of outside-in vs inside-out techniques. BJU Int 100(5):1097–1102PubMedGoogle Scholar
  56. 56.
    Reisenauer C et al (2007) Anatomical conditions for pelvic floor reconstruction with polypropylene implant and its application for the treatment of vaginal prolapse. Eur J Obstet Gynecol Reprod Biol 131(2):214–225PubMedCrossRefGoogle Scholar
  57. 57.
    Reisenauer C et al (2010) Anatomic study of prolapse surgery with nonanchored mesh and a vaginal support device. Am J Obstet Gynecol 203(6):590.e1–590.e7Google Scholar
  58. 58.
    Ward K, Hilton P (2002) Prospective multicentre randomised trial of tension-free vaginal tape and colposuspension as primary treatment for stress incontinence. BMJ 325(7355):67PubMedCrossRefGoogle Scholar
  59. 59.
    Tincello DG et al (2009) Colposuspension or TVT with anterior repair for urinary incontinence and prolapse: results of and lessons from a pilot randomised patient-preference study (CARPET 1). BJOG 116(13):1809–1814PubMedCrossRefGoogle Scholar
  60. 60.
    Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240(2):205–213PubMedCrossRefGoogle Scholar
  61. 61.
    (2002) Directive 2001/20/EC of the European Parliament and of the Council of 4 April 2001 on the approximation of the laws, regulations and administrative provisions of the Member States relating to the implementation of good clinical practice in the conduct of clinical trials on medicinal products for human use. Med Etika Bioet 9:12–19Google Scholar
  62. 62.
    Bollapragada SS, Norrie JD, Norman JE (2007) Review of new regulations for the conduct of clinical trials of investigational medicinal products. BJOG 114(8):917–921PubMedCrossRefGoogle Scholar
  63. 63.
    World Health Organization (2003) Medical device regulations. World Health Organization, GenevaGoogle Scholar
  64. 64.
    Bafghi A et al (2005) Multifilament polypropylene mesh for urinary incontinence: 10 cases of infections requiring removal of the sling. BJOG 112(3):376–378PubMedCrossRefGoogle Scholar
  65. 65.
    Abdel-Fattah M et al (2006) How common are tape erosions? A comparison of two versions of the transobturator tension-free vaginal tape procedure. BJU Int 98(3):594–598PubMedCrossRefGoogle Scholar
  66. 66.
    Sivanesan K, Abdel-Fattah M, Tierney J (2007) Perineal cellulitis and persistent vaginal erosion after transobturator tape (Obtape)—case report and review of the literature. Int Urogynecol J Pelvic Floor Dysfunct 18(2):219–221PubMedGoogle Scholar
  67. 67.
    Chai JY (2000) Medical device regulation in the United States and the European Union: a comparative study. Food Drug Law J 55(1):57–80PubMedGoogle Scholar

Copyright information

© The International Urogynecological Association 2012

Authors and Affiliations

  • Mark Slack
    • 1
  • Donald Ostergard
    • 2
  • Mauro Cervigni
    • 3
  • Jan Deprest
    • 4
    • 5
    Email author
  1. 1.Department of Obstetrics and Gynaecology, Addenbrooke’s HospitalUniversity of Cambridge Teaching Hospitals TrustCambridgeUK
  2. 2.Division of Urogynecology, Department of Obstetrics, Gynecology and Women’s Health, School of MedicineUniversity of LouisvilleLouisvilleUSA
  3. 3.Department of UrogynecologySan Carlo-IDI HospitalRomeItaly
  4. 4.Department of Development and Regeneration, Faculty of Medicine, Pelvic Floor UnitUniversity Hospitals Leuven, Katholieke Universiteit LeuvenLeuvenBelgium
  5. 5.Verloskunde en GynaecologieUniversitaire Ziekenhuizen LeuvenLeuvenBelgium

Personalised recommendations