Skip to main content

Advertisement

Log in

Polypropylene as a reinforcement in pelvic surgery is not inert: comparative analysis of 100 explants

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

Currently, most implants used for reinforcement in surgical treatment of pelvic floor disorders are knitted monofilament polypropylene (PP). While previously recognized as inert, PP is associated with high complication rates. Some recent literature suggests polyester prosthetics based on poly(ethylene terephthalate) (PET), which may be more inert in vivo.

Methods

A sample of 100 implants explanted from patients due to complications was examined to evaluate the relative degradation characteristics of PP and PET prosthetics. Histological, microscopic (scanning electron microscopy, SEM) and chemical analysis (Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC)) were conducted on these explants.

Results

Poly(ethylene terephtahlate) explants appeared to sustain less degradation in vivo than the PP explants observed in this cohort.

Conclusions

This is the first study to evaluate synthetic implants used in a vaginal approach for pelvic floor reinforcement. The study provides evidence contrary to published literature characterizing PP as inert in such applications. Additionally, the study suggests the need for clinical trials comparatively investigating the performance of new types of monofilament prosthetics, such as those comprising PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PFD:

Pelvic floor disorder

PP:

Polypropylene

PET:

Poly(ethylene terephthalate)

PPMF:

Polypropylene monofilament

LDPPMF:

Low density polypropylene monofilament

HDPPMF:

High density polypropylene monofilament

NKNW:

Nonknitted nonwoven polypropylene

PGA:

Poly(glycolic acid)

FTIR:

Fourier transform infrared spectroscopy

DSC:

Differential scanning calorimetry

SEM:

Scanning electron microscopy

References

  1. Culligan PJ, Blackwell L, Goldsmith LJ, Graham CA, Rogers A, Heit MH (2005) A randomized controlled trial comparing fascia lata and synthetic mesh for sacral colpopexy. Obstet Gynecol 106:29–37

    PubMed  Google Scholar 

  2. Karlovsky ME, Kushner L, Badlani GH (2005) Synthetic biomaterials for pelvic floor reconstruction. Curr Urol Rep 6:376–384

    Article  PubMed  Google Scholar 

  3. Wu MP (2008) The use of prostheses in pelvic reconstructive surgery: joy or toy? Taiwan J Obstet Gynecol 47:151–156

    Article  PubMed  Google Scholar 

  4. Debodinance P, Berrocal J, Clave H, Cosson M, Garbin O, Jacquetin B et al (2004) Changing attitudes on the surgical treatment of urogenital prolapse: birth of the tension-free vaginal mesh. J Gynecol Obstet Biol Reprod (Paris) 33:577–588

    CAS  Google Scholar 

  5. Bader G, Fauconnier A, Guyot B, Ville Y (2006) Use of prosthetic materials in reconstructive pelvic floor surgery. An evidence-based analysis. Gynecol Obstet Fertil 34:292–297

    Article  CAS  PubMed  Google Scholar 

  6. Caquant F, Collinet P, Debodinance P, Berrocal J, Garbin O, Rosenthal C et al (2008) Safety of trans vaginal mesh procedure: retrospective study of 684 patients. J Obstet Gynaecol Res 34:449–456

    Article  PubMed  Google Scholar 

  7. Deffieux X, de Tayrac R, Huel C, Bottero J, Gervaise A, Bonnet K et al (2007) Vaginal mesh erosion after transvaginal repair of cystocele using gynemesh or gynemesh-soft in 138 women: a comparative study. Int Urogynecol J Pelvic Floor Dysfunct 18:73–79

    Article  CAS  PubMed  Google Scholar 

  8. Olsen AL, Smith VJ, Bergstrom JO, Colling JC, Clark AL (1997) Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol 89:501–506

    Article  CAS  PubMed  Google Scholar 

  9. Tsui KP, Ng SC, Tee YT, Yeh GP, Chen GD (2005) Complication of synthetic graft materials used in suburethral sling procedures. Int Urogynecol J Pelvic Floor Dysfunct 16:165–167

    Article  PubMed  Google Scholar 

  10. Jia X, Glazener C, Mowatt G, MacLennan G, Bain C, Fraser C et al (2008) Efficacy and safety of using mesh or grafts in surgery for anterior and/or posterior vaginal wall prolapse: systematic review and meta-analysis. BJOG 115:1350–1361

    Article  CAS  PubMed  Google Scholar 

  11. Feiner B, Jelovsek JE, Maher C (2009) Efficacy and safety of transvaginal mesh kits in the treatment of prolapse of the vaginal apex: a systematic review. BJOG 116:15–24

    CAS  PubMed  Google Scholar 

  12. Amid PK, Lichtenstein IL (1997) current assessment of lichtenstein tension-free hernia repair. Chirurg 68:959–964

    Article  CAS  PubMed  Google Scholar 

  13. Lefranc O, Bayon Y, Montanari S, Gravagna Ph (in press) Reinforcement materials in Soft Tissue Repair: Key paramaters controlling tolerance and performance-current and future trends in mesh development, in new techniques in genital prolapse surgery.Drs. Theobald P, Zimmerman CW, Davila GW (Eds.)

  14. Caquant F, Collinet P, Deruelle P, Lucot JP, Cosson M (2005) Perineal cellulitis following trans-obturator sub-urethral tape uratape. Eur Urol 47:108–110

    Article  CAS  PubMed  Google Scholar 

  15. Bafghi A, Valerio L, Benizri EI, Trastour C, Benizri EJ, Bongain A (2005) Comparison between monofilament and multifilament polypropylene tapes in urinary incontinence. Eur J Obstet Gynecol Reprod Biol 122:232–236

    Article  CAS  PubMed  Google Scholar 

  16. Martin LK, Yang CQ (1994) Infrared spectroscopy of the photoxidation of a polyethylene nonwoven fabric. J Environ Polym Degrad 2(2):153–159

    Article  CAS  Google Scholar 

  17. Clayman HM (1981) Polypropylene. Ophthalmology 88:959–964

    CAS  PubMed  Google Scholar 

  18. Costa L, Jacobson K, Bracco P, Brach del Prever EM (2002) Oxidation of orthopaedic uhmwpe. Biomaterials 23:1613–1624

    Article  CAS  PubMed  Google Scholar 

  19. Bracco P, Brunella V, Trossarelli L, Coda A, Botto-Micca F (2005) Comparison of polypropylene and polyethylene terephthalate (dacron) meshes for abdominal wall hernia repair: a chemical and morphological study. Hernia 9:51–55

    Article  CAS  PubMed  Google Scholar 

  20. Costello CR, Bachman SL, Grant SA, Cleveland DS, Loy TS, Ramshaw BJ (2007) Characterization of heavyweight and lightweight polypropylene prosthetic mesh explants from a single patient. Surg Innov. 14:168–176

    Article  CAS  PubMed  Google Scholar 

  21. Coda A, Bendavid R, Botto-Micca F, Bossoti M, Bona A (2003) Structural alterations of prosthetic meshes in humans. Hernia 7:44–49

    Google Scholar 

  22. Debodinance P, Delporte P, Engrand J, Boulogne M (2002) Development of a better tolerated prosthetic materials: applications in gynecological surgery. J Gynecol Obstet Biol Reprod (Paris) 31:527–540

    CAS  Google Scholar 

  23. Altman AJ, Gorn RA, Craft J, Albert DM (1986) The breakdown of polypropylene in the human eye: is it clinically significant? Ann Ophthalmol 18:182–185

    CAS  PubMed  Google Scholar 

  24. Jongebloed WL, Worst JF (1986) Degradation of polypropylene in the human eye: a SEM-study. Doc Ophthalmol 64:143–152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Many thanks to Jean-Pierre Laugier for his tremendous pedagogic work with SEM at the CCMA.

Conflicts of interest

The work and research of H. Yahi were supported by a grant from SOFRADIM; S. Montanari is an affiliate of Covidien; Henri Clavé has an educational position for Ethicon Europe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Clavé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clavé, A., Yahi, H., Hammou, JC. et al. Polypropylene as a reinforcement in pelvic surgery is not inert: comparative analysis of 100 explants. Int Urogynecol J 21, 261–270 (2010). https://doi.org/10.1007/s00192-009-1021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-009-1021-8

Keywords

Navigation