Abstract
Control over digital transactions has steadily risen in recent years, to an extent that puts into question the Internet’s traditional openness. To investigate the origins and effects of such change, the paper formally models the historical evolution of digital control. In the model, the economywide features of the digital space emerge as a result of the endogenous adaptation (coevolution) of users’ preferences (culture) and platform designs (technology). The model shows that: a) in the digital economy there exist two stable culturaltechnological equilibria: one with intrinsically motivated users and low control; and the other with purely extrinsically motivated users and high control; b) before the opening of the Internet to commerce, the emergence of a lowcontrolintrinsicmotivation equilibrium was favored by the specific set of norms and values that formed the early culture of the networked environment; and c) the opening of the Internet to commerce can indeed cause a transition to a highcontrolextrinsicmotivation equilibrium, even if the latter is Pareto inferior. Although it is too early to say whether such a transition is actually taking place, these results call for a great deal of attention in evaluating policy proposals on Internet regulation.
This is a preview of subscription content, log in to check access.
Notes
 1.
The intentional absence of control over users’ actions (e.g. in the provision of content) is a key feature of most sharingbased platforms such as Wikipedia, YouTube, Flickr, as well as the communities of free software developers and peertopeer file sharing networks. Similarly, the lack of control plays an important role in the decentralized mechanisms of relevance and accreditation that are implemented in online marketplaces such as Amazon and eBay. All these platforms can be generally considered as instances of what Benkler (2006) calls peer production. For a detailed discussion of the role that users’ decisional autonomy plays in peer production, see Benkler and Nissenbaum (2006).
 2.
See Robert Booth, Government plans increased email and social network surveillance, The Guardian, April 1, 2012, available at: http://www.guardian.co.uk/world/2012/apr/01/governmentemailsocialnetworksurveillance(last time checked: April 24, 2012).
 3.
For a detailed analysis of ACTA and related criticisms, see McManis (2008).
 4.
See Jonathan Weisman, After an Online Firestorm, Congress Shelves Antipiracy Bills, The New York Times, January 20, 2012, available at:http://www.nytimes.com/2012/01/21/technology/senatepostponespiracyvote.html?_r=1(last time checked: April 24, 2012).
 5.
See Claire Cain Miller and Miguel Helft, Web Plan From Google and Verizon Is Criticized, The New York Times, August 9, 2010, available at:http://www.nytimes.com/2010/08/10/technology/10net.html?_r=2&ref=technology (last time checked: April 25, 2012). For more detail on the concept of “net neutrality”, see Wu (2003a).
 6.
Lessig (1999, 2006) coined the wellknown catchphrase “Code is Law” capturing the idea that, in the digital space, software code  as opposed to law, market and social norms  becomes the most powerful regulator of all. This is due to two main factors: first, the weakness of traditional law as a tool of online regulation; and second, the specific features of code that are associated with its malleability and nearly perfect enforceability. Overall, it is the combination of these specific features of code that, according to Lessig, makes cyberspace an arena of (potentially) perfect control. Obviously this does not mean that, at present, control is close to being perfectly implemented in the digital space. When one looks at the diffusion of opensource initiatives, as well as the adoption of multilicensing in the distribution of software packages, it is clear that there still exist wide segments of the media industry that are characterized by low level of control. What the argument of Lessing suggests, however, is just that, even in these segments, control is potentially available and if it is not implemented there must be good reasons for it.
 7.
Similar provisions are included in the terms of service of most digital platforms. See, for instance, art. 5.5 in Facebook’s Terms of Service: “if you repeatedly infringe other people’s intellectual property rights, we will disable your account when appropriate”, available at http://www.facebook.com/legal/terms (last time checked: April 25, 2012).
 8.
See Zittrain (2000) on the creation of socalled trusted systems.
 9.
See MacKinnon (2012) on Apple’s App censorship practices.
 10.
For a similar approach, see Benkler (2002b).
 11.
This way of modelling motivational crowding out is generally called “marginal”. An alternative is to assume “categorical” crowding out. On the distinction between marginal and categorical crowding out, see Bowles (2012).
 12.
In particular, this assumption underestimates the possibility that an interior optimal rate of control exists. At the same time, however, the interior optimal rate of control would be itself a function of intrinsic motivation. It follows that, in the presence of users with heterogeneous motivations, two optimal rates of control would still exist, one with relatively low control with respect to the other. By focusing on corner solutions, we simply approximate (one or both of) these interior points and make the model easier to study.
 13.
I choose to consider users with both intrinsic and extrinsic motivations instead of purely intrinsically motivated users for two reasons: first of all, in most parts of the digital economy, users who are both intrinsically and extrinsically motivated tend to be more frequent than purely intrinsically motivated users (see, for instance, Hertel et al. 2003; Lakhani and Wolf 2005; Hars and Ou 2001); second, the comparison of effort level associated with pure intrinsic motivation and pure extrinsic motivation would make it necessary to impose additional constraints on parameters λ and ϕ, without relevant effects on the final results.
 14.
A more complex version of the model could include other behavioral types, such as purely intrinsically motivated user or users with different degrees of intrinsic motivation. At this stage, however, I prefer to favor simplicity and leave more complex specifications for further research.
 15.
 16.
Digital rights management (DRM) systems are an example of access control technology that adds code to digital content that disables the simple ability to copy or distribute that content  at least without the technical permission of the DRM system itself (Lessig 2006). Presently, DRM is in common use by the entertainment industry (e.g. audio and video publisher). Many online music stores, such as Apple Inc.’s iTunes Store, as well as many ebook publisher also use DRM, as do cable and satellite service operators to prevent unauthorized use of content or services.
 17.
Deep packet inspection (DPI) systems are a form of computer network packet filtering that read and classify Internet traffic as it passes through a network, enabling the identification, analysis, blockage and even alteration of information (MacKinnon 2012). Initially, DPI were used mainly to secure private internal networks. Recently, Internet service providers (ISPs) have also started to apply this technology on the public network provided to consumers. Common uses of DPI by ISPs are lawful intercetp, policy definition and enforcement, targeted advertising, quality service and copyright enforcement.
 18.
The two graphs are adaptations of the data reported in Zittrain (2008).
 19.
Internet Systems Consortium (ISC) is a nonprofit public benefit corporation dedicated to supporting the infrastructure of the universal connected selforganizing Internet  and the autonomy of its participants  by developing and maintaining core production quality software, protocols, and operations. For more detail on ISC and the data reported in Fig. 3, see http://www.isc.org (last time checked: April 30, 2012).
 20.
The Computer Emergency Response Team (CERT) Coordination Center is a research center located at Carnegie Mellon University’s Software Engineering Institute with the aim of studying Internet security vulnerabilities. The same data were originally reported by Zittrain (2006). The data are available only for the period 19882003 because in 2004 CERT announced it would no longer keep track of security incidents, since attacks had become so commonplace as to be indistinguishable from one another.
 21.
Software designed to infiltrate and damage a computer system (Zittrain 2006).
 22.
A similar device is usually employed in population genetics to study the effects of random migration among groups.
 23.
On the relationship between riskdominance and stochastic stability, see (Foster and Peyton Young 1990).
 24.
At the beginning of 2012, after widespread protests, the vote on the two bills was indefinitely postponed by the U.S. Congress.
 25.
See GoogleVerizon Proposal for a legislative framework for network neutrality, available at: http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/it//googleblogs/pdfs/verizon_google_legislative_framework_proposal_081010.pdf (last time checked: May 3, 2012).
 26.
See Cain Miller and Helft, supra note 5.
 27.
See Zack Whittacker, Wikipedia losing contributors: Fatal flaw, the community editors?, ZDNet, Augist 4, 2011, available at: http://www.zdnet.com/blog/btl/wikipedialosingcontributorsfatalflawthecommunityeditors/54144 (last time checked: May 3, 2012).
References
Abbate J (1999) Inventing the internet. MIT Press, Cambridge
Aghion P, Dewatripont M, Rey P (2004) Transferable control. J Eur Econ Assoc 2(1):115–138
Aghion P, Tirole J (1997) Formal and real authority in organizations. J Polit Econ 105(1):1–29
Baker G, Gibbons R, Murphy KJ (1999) Informal authority in organizations. J Law Econ Org 15(1):56–73
Belloc M, Bowles S (2011) International trade, factor mobility and the persistence of culturalinstitutional diversity, unpublished manuscript
Belloc M, Bowles S (2013) The persistence of inferior culturalinstitutional conventions. Am Econ Rev Pap Proc 103(3):1–7
Benabou R, Tirole J (2003) Intrinsic and extrinsic motivation. Rev Econ Stud 70:489–520
Benkler Y (1998) Overcoming agoraphobia: Building the commons of the digitally networked environment. Harvard J Law Technol 11(2):287–400
Benkler Y (2001) Siren songs and amish children: Autonomy, information, and law. N Y Univ Law Rev 76:23–113
Benkler Y (2002a) Coase’s penguin, or linux and the nature of the firm. Yale Law J 112(3):369–446
Benkler Y (2002b) Intellectual property and the organization of information production. Int Rev Law Econ 22:81–107
Benkler Y (2006) The Wealth of Networks: How Social Production Transforms Markets and Freedom
Benkler Y (2012a) A free irresponsible press: Wikileaks and the battle over the soul of the networked fourth estate. Harvard Civili RightsCivil Liberties Law Review forthcoming
Benkler Y (2012b) Wikileaks and the protectip act: A new publicprivate threat to the internet commons. Doedalus, J Am Acad of Arts Sci 140(4):154–164
Benkler Y, Nissenbaum H (2006) Commonsbased peer production and virtue. J Pol Philos 14(4):394–419
BernersLee T (1999) Weaving the web: The original design and ultimate destiny of the world wide web. HarperCollins Publisher Inc., New York
Bisin A, Verdier T (2001) The economics of cultural transmission and the dynamics of preferences. J Econ Theory 97:298–319
Bollier D (2008) Viral spiral: How the commoners built a digital republic of their own. The New Press, New York
Bowles S (1985) The production process in a competitive economy: walrasian, neohobbesian, and marxian. Am Econ Rev 75(1):16–36
Bowles S (2006) Microeconomics: Behavior, institutions and evolutions. Princeton University Press, Princeton
Bowles S, Choi JK, Hopfensitz A (2003) The coevolution of individual behaviors and social institutions. J Theor Biol 223:135–147
Bowles S, Hwang SH (2008) Social preferences and public economics: Mechanism design when social preferences depend on incentives. J Public Econ 92(89):1811–20
Bowles S (2012) Economic incentives and social preferences. Journal of Economic Literature forthcoming
Charness G, CoboReyes R, Jimenez N, Lacomba JA, Lagos F (2011) The hidden advantage of delegation: Paretoimprovements in a giftexchange game. The American Economic Review forthcoming
Conner K, Rumelt R (1991) Software piracy: An analysis of protection strategies. Manag Sci 37:125–139
Deci EL, Ryan RM (1985) Intrinsic motivation and selfdetermination in human behavior. Plenum Press, New York
(2010). In: Deibert R, Palfrey J, Rohozinski R, Zittrain J (eds) Access controlled: The shaping of power, rights and rule in cyberspace. MIT Press, Cambridge
ElkinLoren N, Salzberger EM (2000) Law and economics in cyberspace. Int Rev Law Econ 19:553–581
Falk A, Kosfeld M (2006) The hidden costs of control. Am Econ Rev 96 (5):1611–30
Fehr E, Holger H, Wilkening T (2010) The lure of authority: Motivation and incentice effects of power, unpublished manuscript
Foster DP, Peyton Young H (1990) Stochastic evolutionary game dynamics. Theor Popul Biol 38(2):219–232
Frey BS (1997) Not hust for the money: an economic theory of personal motivation. Edward elgar publishing inc., Chelthenham, UK
Frey BS, Jegen R (2001) Motivation crowding theory: a survey of empirical evidence. J Econ Surv 15(5):589–611
Gagne M, Deci EL (2005) Selfdetermination theory and work motivation. J Organ Behav 26:331–362
Goldsmith J, Wu T (2006) Who controls the internet? illusions of a borderless wolrd. Oxford University Press, New York
Hars A, Ou S (2001) Working for free? motivations of participating in open source projects, system Sciences, 2001. Proceedings of the 34th Annual Hawaii International Conference on. IEEE
Hertel G, Niedner S, Herrmann S (2003) Motivation of software developers in open source projects: An internetbased survey of contributors to the linux kernel. Res Policy 32:1159–1177
Himanen P (2001) The Hacker Ethic: A radical approach to th Philosophy of business. Random House Inc., New York
Irlenbusch B, Ruchala GK (2008) Relative rewards within teambased compensation. Labour Econ 15:141–167
Johnson DR, Post D (1996) Law and borders: The rise of law in cyberspace. Stanford Law Rev 48(5):1367–1402
Lakhani KR, Wolf RG Feller J, Fitzgerald B, Hissman SA, Lakhani K (eds) (2005) Why hackers do what they do: Understanding motivation and effort in free/open source software projects. MIT Press, Cambridge
Landini F (2012) Technology, property rights and organizational diversity in the software industry. Struct Chang Econ Dyn 23(2):137–150
Leiner BM, Cerf VG, Clarck DD, Kahn RE, Kleinrock L, Lynch DC, Postel J, Roberts LG, Wolff SS (2001) The past and future history of the internet. Commun ACM 40(2):102–108
Lessig L (1996) The zones of cyberspace. Stanford Law Rev 48(5):1403–1411
Lessig L (1999) Code and other laws of cyberspace. Basic Books, New York
Lessig L (2006) Code: version 2.0. Basic Books, New York
MacKinnon R (2012) Consent of the networked: The worldwide struggle for internet freedom. Basic Books, New York
Marx K (1970) Il Capitale: Critica dell’Economia Politica. Roma, Newton Compton editori
McManis CR (2008) The proposed anticounterfeiting trade agreement (acta): Two tales of a treaty. Houston Law Rev 46(4):1235–1256
Mitchell WJ (1995) City of Bits: Space, Place, and the Infobahn. MIT Press, Cambridge
Naidu S, Hwang SH, Bowles S (2010) Evolutionary bargaining with intentional idyosincratic play. Economic Letters forthcoming
Parsons T (1963) On the concept of political power. Proceedings of the American Philosphical Society June, 232–262
Posner RA (1974) Theories of economic regulation, mimeo
Post D (1995) Anarchy, state and the internet. Journal of Online Law (3)
Reidenberg JR (1998) Lex informatica: The formulation of information policy rules through technology. Texas Law Rev 76(3):553–593
Shaw A (2008) The problem with the anticountereiting trade agreement (and what to do about it). KEStudies 2
Shy O, Thisse JF (1999) A strategic approach to software protection. J Econ Manag Strateg 8:163–190
Simon HA (1951) A formal theory of the employment relationship. Econometrica 19(3):293–305
Slive J, Bernhardt D (1998) Pirated for profit. Can J Econ 31:886–899
Sterling B (2002) The hacker crackdown: Law and disorder on the electronic frontier. Bantam Books, New York
Strahilevitz LJ (2003) Charismatic code, social norms, and the emergence of cooperation on the fileswapping networks. Virginia Law Rev 89(3):505–595
Takayama L (1994) The welfare implications of unauthorized reproduction of intellectual property in the presence of demand network externalities. J Ind Econ 42:155–166
von Hippel E (2005) Democratizing Innovation. MIT Press, London
Weber M (1978) Economy and society. University of California Press, Berkeley
Wu T (2003a) Network neutrality, broadband discrimination. J Telecommun High Technol Law 2:141–176
Wu T (2003b) When code isn’t law. Virginia Law Rev 89(4):679–751
Wu T (2010) The master switch: The rise and fall of information empires. Random House Inc., New York
Young HP (1998) Individual strategy and social structure: an evolutionary theory of institutions. Princeton University Press, Princeton
Zittrain J (2000) What publisher can teach the patient: Intellectual property and privacy in an era of trusted privication. Stanford Law Rev 52(5):1201–1250
Zittrain J (2003) Internet points of control. Boston College Law Rev 44(653)
Zittrain J (2006) The generative internet. Harvard Law Rev 119(7):1974–2040
Zittrain J (2008) The future of the internet and how to stop it. Yale University Press, New Haven and London
Acknowledgments
The author is grateful to Ugo Pagano, Sam Bowles as well as participants to the ISLE 2012 conference at the University of Rome 3 for the useful discussions and comments. The usual caveat applies.
Author information
Affiliations
Corresponding author
Appendices
Appendix A
Proof
of Lemma 1 The derivative of Eqs. 4 with respect to a gives us the following bestresponse function for EI and PEusers when paired with a generic designer j: a _{ E I, j } = ϕ + λ(1 − t) and a _{ P E, j } = ϕ. By substituting away for t, we obtain the bestresponse level of a reported in the lemma. □
Proof
of Proposition 1 {E I, L} is proven to be Nash equilibrium as long as: (a) (ϕ + λ)^{2}/2 > ϕ ^{2}/2, and (b) q(ϕ + λ) − γ η k > q ϕ − δ/2. Condition (a) is selfexplained. Condition (b) reduces to \(\delta >2(\gamma \eta k  q\lambda )=\underline {\delta }\). Similarly, {P E, H} is a Nash equilibrium as long as: (c) ϕ ^{2}/2 > ϕ ^{2}/2 − μ and (d) q ϕ − γ k < q ϕ − δ/2. Condition (c) is selfexplained. Condition (d) reduces to \(\delta <2\gamma k=\overline {\delta }\). For 0 < η < 1, \(\underline {\delta }<\overline {\delta }\) is always true. It follows that: (i) when \(\delta >\overline {\delta }\) condition (b) is satisfied but not condition (d), hence {E I, L} is the only Nash equilibrium; (ii) when \(\delta <\underline {\delta }\) condition (d) is satisfied but not condition (b), hence {P E, H} is the only Nash equilibrium; and (iii) when \(\underline {\delta }<\delta <\overline {\delta }\) conditions (b) and (d) are simultaneously satisfied, hence both {E I, L} and {P E, H} are Nash equilibria. Corollary 1.1 follows from the fact that two necessary conditions for {P E, L} and {E I, H} to be Nash equilibria are that PE is a bestresponse to L and EI is a best response to H, but this is impossible because it would violate conditions (a) and (c) above. Corollary 1.2 follows directly from points (i), (ii) and (iii) above. □
Proof
of Proposition 2 For any λ > 0, a necessary and sufficient condition for {P E, H} to be Pareto efficient is that q(ϕ + λ) − γ η k < q ϕ − δ/2, which reduces to \(\delta <\overline {\delta }\). Otherwise, {E I, L} Pareto dominates {P E, H}. This, together with the results of Proposition 1, implies that: (i) if \(\delta <\overline {\delta }\), then {P E, H} is Pareto efficient and it is also the only Nash equilibrium of the game; (ii) if \(\delta >\overline {\delta }\), then {E I, L} is Pareto dominant and it is also a Nash equilibrium. Points (i) and (ii), together with the fact that for \(\underline {\delta }<\delta <\overline {\delta }\) both {E I, L} and {P E, H} are Nash equilibria, prove the proposition. □
Proof
of Proposition 3 The five culturaltechnological equilibria are derived by simply solving the system (10)–(11) for \({\Delta }\omega _{EI}^{\tau }=0\) and \({\Delta }\omega _{L}^{\tau }=0\). The proof in this case is omitted. The asymptotic properties of each equilibrium are derived by analyzing the Jacobian Matrix J(ω _{ E I }, ω _{ L }) associated with system (10)–(11), which takes the following form:
At {0, 0}, we have
from which it follows that
Since Tr (J) < 0 and Det (J) > 0 for any δ < 2γ k, {0, 0} is asymptotically stable.At {1, 0}, we have
from which it follows that
Since Tr (J) > 0 and Det (J) > 0 for any δ > 2(γ η k − q λ), {1, 0} is unstable.At {0, 1}, we have
from which it follows that
Since Tr (J) > 0 and Det (J) > 0 for any δ < 2γ k, {0, 1} is unstable.At {1, 1}, we have
from which it follows that
Since Tr (J) < 0 and Det (J) > 0 for any δ > 2(γ η k − q λ), {1,1} is asymptotically stable.At \(\lbrace \omega _{EI}^{*},\omega _{L}^{*} \rbrace \), we have
from which it follows that
Since Det (J) < 0 for any δ > 2(γ η k − q λ), \(\lbrace \omega _{EI}^{*},\omega _{L}^{*} \rbrace \) is a saddle. □
Proof
of Proposition 4 From Definition 3 and the value of \(\omega _{EI}^{*}\) and \(\omega _{L}^{*}\) reported in Proposition 3 it follows that:

μ ≥ ψ(2γ k − δ)/2[δ + 2(q λ − γ k η] ⇔
$$ r_{01}=\omega_{EI}^{*}=\frac{2\gamma k\delta}{2\left[q\lambda +\gamma k(1\eta)\right]}\;\;\;\;and\;\;\;\;r_{10}=1\omega_{L}^{*}=\frac{\psi}{\psi +2\mu} $$(21) 
μ < ψ(2γ k − δ)/2[δ + 2(q λ − γ k η] ⇔
$$ r_{01}=\omega_{L}^{*}=\frac{2\mu}{\psi +2\mu}\;\;\;\;and\;\;\;\;r_{10}=1\omega_{EI}^{*}=\frac{\delta + 2(q\lambda \gamma k\eta)}{2\left[q\lambda +\gamma k(1\eta)\right]} $$(22)
where ψ = λ(λ + 2ϕ). According to Definition 5, E _{0} is SSS if and only if r _{10} < r _{01}. Simple algebra shows that, given Eqs. 20 and 21, the latter condition holds if and only if k < [ψ(2q λ + δ) + 2μ δ]/2γ(2μ + η ψ) = k ^{∗}. The second part of the proposition follows directly from Proposition 2. □
Appendix B
Payoffs in Table 1
Let us indicate with U _{ i, j } the utility of an itype user when matched with a jtype designer, and with π _{ j, i } the return to an jtype designer when matched with a itype user. Moreover, let us write a _{ i, j } as the bestresponse level of a for an itype user when matched with a jtype designer. Given Eqs. 1 and 2 we have:
where η(λ) takes the following form:
By replacing into Eqs. 23 and 24 the value for a _{ i, j } reported in Lemma 1, and substituting away for t (i.e. replacing t = 0 and t = 1 for a match with an L and a Htype designer respectively), we obtain the following results:
Replicator equations
The systems of replicator equations represented by Eqs. 10 and 11 is obtained as follows. Let’s write the probability that an agent (user and designer) of type i switches to type j at time τ as \(p_{ij}^{\tau }\). Given the updating process described above we have:
for i, j = E I, P E and i≠j in the case of users and i, j = L, H and i≠j in the case of designers. On this basis, the expected fractions of EIusers in period τ + 1 is given by:
where σ _{ P E } and σ _{ E I } are two binary functions such that σ _{ P E } = 1 if \(V_{PE}^{\tau }>V_{EI}^{\tau }\) and is zero otherwise, σ _{ E I } = 1 if \(V_{EI}^{\tau }\geq V_{PE}^{\tau }\) and is zero otherwise, and σ _{ P E } + σ _{ E I } = 1. Equation 29 reads as follows: the expected fraction of EIusers at τ+1 is given by the fraction of EIusers at τ (first term), minus the fraction of EIusers who are paired with an PEuser and switch their type (second term), plus the fraction of PEusers who are paired with an EIuser and switch their type (third term). Similarly, the expected fractions of Ldesigners in period τ + 1 is given by:
where σ _{ H } = 1 if \(V_{H}^{\tau }>V_{L}^{\tau }\) and is zero otherwise, σ _{ L } = 1 if \(V_{L}^{\tau }\geq V_{H}^{\tau }\) and is zero otherwise, and σ _{ H } + σ _{ L } = 1. Subtracting \(\omega _{I}^{\tau }\) and \(\omega _{L}^{\tau }\) from both sides of Eqs. 29 and 30 respectively and rearranging we get Eqs. 10 and 11.
Stochastic dynamical system
In the stochastic environment described in Section 4, the expected fraction of EIusers in period τ + 1 is given by
where σ _{ P E } and σ _{ E I } are two binary functions such that σ _{ P E } = 1 if \(V_{PE}^{\tau }>V_{EI}^{\tau }\) and is zero otherwise, σ _{ E I } = 1 if \(V_{EI}^{\tau }\geq V_{PE}^{\tau }\) and is zero otherwise, and σ _{ P E } + σ _{ E I } = 1, and where
is a normalizing factor that varies according to the number of new users who enter into the economy. The part of Eq. 31 inside the square brackets refers to the inside population and reads as follows: the expected fraction of EIusers at τ+1 is given by the fraction of EIusers at τ (first term), minus the fraction of EIusers who are paired with an PEuser and switch their type (second term), plus the fraction of PEusers who are paired with an EIuser and switch their type (third term). Once such updating process is completed, \(s_{u}^{\tau }\) new users enter the economy with probability ε. The fraction of EIusers at the beginning of next period is thus given by the updated fraction of EIusers normalized by the new size of the users’ population (i.e. multiplication by \(\chi _{u}^{\tau }\)), plus the fraction of EIusers that are included in the set of new entrants (i.e. \(\nu _{EI}^{\tau }(1\chi _{u}^{\tau })\)). Similarly, the expected fractions of Ldesigners in period τ + 1 is given by:
where
where σ _{ H } = 1 if \(V_{H}^{\tau }>V_{L}^{\tau }\) and is zero otherwise, σ _{ L } = 1 if \(V_{L}^{\tau }\geq V_{H}^{\tau }\) and is zero otherwise, and σ _{ H } + σ _{ L } = 1. Subtracting \(\omega _{EI}^{\tau }\) and \(\omega _{L}^{\tau }\) from both sides of Eqs. 31 and 33, respectively, we get:
Equations 35 and 36 represent a system of differential equations which describes how the distribution of types \(\lbrace \omega _{EI}^{\tau }, \omega _{L}^{\tau } \rbrace \) evolves over time. The main difference with the system composed of Eqs. 10 and 11 is that this time there are also some stochastic components represented by variables χ _{ u }, χ _{ d }, \(\nu _{EI}^{\tau }\) and \(\nu _{L}^{\tau }\). The latter are the sources of exogenous variation that make a transition between the basins of attraction of the two stable equilibria E _{0} and E _{1} possible.
Rights and permissions
About this article
Cite this article
Landini, F. The evolution of control in the digital economy. J Evol Econ 26, 407–441 (2016). https://doi.org/10.1007/s001910160450z
Published:
Issue Date:
Keywords
 Internet control
 Internet regulation
 Motivation
 Online law enforcement
 Technology
 Endogenous preferences
 Evolutionary games
JEL Classification
 C73
 D02
 K00
 L23