Skip to main content
Log in

Multi-GNSS orbit combination at Wuhan University: strategy and preliminary products

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Multi-GNSS orbits from the analysis centres (ACs) of the multi-GNSS Pilot Project of the International GNSS Service (IGS) are combined at Wuhan University after aligning individual orbits to the IGS reference frame realized by the operational combined GPS orbits and assigning robust weights for each constellation. The consistency between combined orbit and individual AC solutions is assessed using the weighted root mean square of the orbit residuals over 2 years. In general, orbit comparison between the combined and AC solutions shows that the GPS orbits achieve the best consistency, followed by Galileo and GLONASS, BeiDou-2 and QZSS containing IGSO and GEO satellites, obtaining the largest scatter of orbit residuals. Moreover, the impacts of the change in processing strategies for individual ACs during precise orbit determination are also investigated in terms of constellation-specific transformation parameters. The obvious bias of scale and equatorial translation parameters derived from orbit comparison is identified, which may be related to the inclusion of more satellites and the updated phase centre offset (PCO). The updating of orbit models also shifts the orbit scale. The accuracy of the combined orbits is evaluated with satellite laser ranging (SLR) observations, and the root mean square of 2.3 cm, 3.6 cm, 5.0 cm and 2.9 cm is achieved for the Galileo, GLONASS, BeiDou-2 IGSO and BeiDou-2 MEO satellites during non-eclipse season, respectively, and it is at the decimetre level for the QZSS IGSO satellites. However, there are systematic sun elongation angle-dependent patterns in the SLR residuals for those satellites, which are mainly due to the noncubic shape of the satellites and partly generated by not modelling the thermal radiation pressure. Hence, refined orbit models are suggested to be adopted by ACs for multi-GNSS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The SLR observations used for this study can be freely downloaded from the Crustal Dynamics Data Information System servers, i.e. ftp://ftp.cddis.eosdis.nasa.gov/slr/data/npt_crd. The Multi-GNSS orbits of all MGEX ACs can also be freely downloaded from three data centres, i.e. Institut Géographique National (IGN) on ftp://igs.ign.fr/pub/igs/products/mgex, WHU on ftp://igs.gnsswhu.cn/pub/gps/products/mgex and CDDIS on ftp://ftp.cddis.eosdis.nasa.gov/gps/products/mgex. The combined Multi-GNSS orbit solutions can be download from WHU data centre at ftp://igs.gnsswhu.cn/pub/whu/MGEX.

References

  • Arnold D, Meindl M, Beutler G et al (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geod 89:775–791. https://doi.org/10.1007/s00190-015-0814-4

    Article  Google Scholar 

  • Bar-Sever Y (1996) A new model for GPS yaw attitude. J Geod 70:714–723. https://doi.org/10.1007/s001900050060

    Article  Google Scholar 

  • Beutler G, Brockmann E, Gurtner W et al (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–386

    Google Scholar 

  • Beutler G, Kouba J, Springer T (1995) Combining the orbits of the IGS analysis centers. Bull Géod 69:200–222. https://doi.org/10.1007/BF00806733

    Article  Google Scholar 

  • CAO (2019) QZSS Satellite Information. The Cabinet Office, Government of Japan. https://qzss.go.jp/en/technical/qzssinfo/index.html. Accessed 6 Apr 2023

  • Chen K, Xu T, Chen G, et al (2015) The orbit and clock combination of iGMAS analysis centers and the analysis of their precision. In: Sun J, Liu J, Fan S, Lu X (eds) China satellite navigation conference (CSNC) 2015 Proceedings, vol II. Springer, Berlin, pp 421–438

  • CSNO (2019) Satellite Information of BDS, China Satellite Navigation Office. http://en.beidou.gov.cn/SYSTEMS/Officialdocument/201912/P020200103556125703019.rar. Accessed 6 Apr 2023

  • Dach R, Schaer S, Arnold D, et al (2018) Center for orbit determination in Europe (CODE) Technical Report 2017. In: Villiger A, Dach R (eds) IGS Technical Report 2018. IGS Central Bureau. pp 31–46

  • Dach R, Schaer S, Arnold D, et al (2019) Center for orbit determination in Europe (CODE) Technical Report 2018. In: Villiger A, Dach R (eds) IGS Technical Report 2019. IGS Central Bureau

  • Deng Z, Fritsche M, Nischan T, Bradke M (2016a) Multi-GNSS ultra rapid orbit- clock- & EOP-product series. GFZ Data Serv. https://doi.org/10.5880/GFZ.1.1.2016.003

    Article  Google Scholar 

  • Deng Z, Fritsche M, Uhlemann M, et al (2016b) Reprocessing of GFZ multi-GNSS product GBM. IGS workshop 2016b, Sydney, Australia

  • Dilssner F, Springer T, Gienger G, Dow J (2011) The GLONASS-M satellite yaw-attitude model. Adv Space Res 47:160–171. https://doi.org/10.1016/j.asr.2010.09.007

    Article  Google Scholar 

  • Dilssner F, Springer T, Schönemann E, Enderle W (2014) Estimation of satellite antenna phase center corrections for BeiDou. IGS Workshop 2014. Pasadena

  • Dilssner F (2017) A note on the yaw attitude modeling of BeiDou IGSO-6. http://navigation-office.esa.int/attachments_24576369_1_BeiDou_IGSO-6_Yaw_Modeling.pdf. Accessed 6 Apr 2023

  • Ferland R, Piraszewski M (2009) The IGS-combined station coordinates, earth rotation parameters and apparent geocenter. J Geod 83:385–392. https://doi.org/10.1007/s00190-008-0295-9

    Article  Google Scholar 

  • Fritsche M (2016) Multi-GNSS orbit and clock combination: preliminary results. IGS Workshop 2016. Sydney, NSW, Australia

  • GSC (2019) Galileo Satellite Metadata, European GNSS Service Centre. https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata. Accessed 6 Apr 2023

  • Guo J, Xu X, Zhao Q, Liu J (2016) Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. J Geod 90:143–159. https://doi.org/10.1007/s00190-015-0862-9

    Article  Google Scholar 

  • Guo J, Chen G, Zhao Q et al (2017) Comparison of solar radiation pressure models for BDS IGSO and MEO satellites with emphasis on improving orbit quality. GPS Solut 21:511–522. https://doi.org/10.1007/s10291-016-0540-2

    Article  Google Scholar 

  • Guo J, Zhao Q, Xu X, et al (2018) Real-time orbit and clock products at Wuhan University to support multi-GNSS applications. IGS Workshop 2018, Oct 29–Nov 02. Wuhan, China

  • Ikari S, Ebinuma T, Funase R, Nakasuka S (2013) An evaluation of solar radiation pressure models for QZS-1 precise orbit determination. In: Proceedings of the ION GNSS 2013, Institute of Navigation. September 16–20, 2013, Nashville, pp 1234–1241

  • Johnston G, Riddell A, Hausler G (2017) The international GNSS service. In: Teunissen PJG, Montenbruck O (eds) Springer handbook of global navigation satellite systems. Springer, Cham, pp 967–982

    Chapter  Google Scholar 

  • Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13:1–12. https://doi.org/10.1007/s10291-008-0092-1

    Article  Google Scholar 

  • Kouba J, Mireault Y, Lahaye F (1995) IGS orbit/clock combination and evaluation, Appendix 1 of the analysis coordinator report. Jet Propulsion Laboratory Publication, pp 18–95

  • Kouba J (2011) GPS/GLONASS eclipsing—Fortran subroutine eclips.f. http://acc.igs.org/orbits/EclipseReadMe.pdf. Accessed 6 Apr 2023

  • Loyer S, Perosanz F, Versini L, et al (2018) CNES/CLS IGS Analysis center: recent activities. IGS Workshop 2018, Oct. 29–Nov. 02. Wuhan, China

  • Männel B, Brandt A, Bradke M et al (2020) Status of IGS reprocessing activities at GFZ. In: Freymueller JT, Sánchez L (eds) Beyond 100: the next century in geodesy. Springer, Cham, pp 37–43

    Chapter  Google Scholar 

  • Männel B, Deng Z, Sakic P, et al (2019) GFZ analysis center technical report 2018. In: Villiger A, Dach R (eds) IGS Technical Report 2019. IGS Central Bureau

  • Mansur G, Sakic P, Männel B, Schuh H (2020) Multi-constellation GNSS orbit combination based on MGEX products. Adv Geosci 50:57–64. https://doi.org/10.5194/adgeo-50-57-2020

    Article  Google Scholar 

  • Mansur G, Sakic P, Brack A et al (2022) Combination of GNSS orbits using least-squares variance component estimation. J Geod 96:92. https://doi.org/10.1007/s00190-022-01685-y

    Article  Google Scholar 

  • Masoumi S, Moore M (2019) IGS ACC v2.0-Status of the software. Unified Analysis Workshop, 4 October, 2019. Paris, France

  • Mervart L, Beutler G, Rothacher M, Schaer S (1996) The impact of ambiguity resolution on GPS orbit determination and on global geodynamics studies. In: Beutler G, Melbourne WG, Hein GW, Seeber G (eds) GPS trends in precise terrestrial, airborne, and spaceborne applications. Springer, Berlin, pp 285–289

    Chapter  Google Scholar 

  • Montenbruck O, Schmid R, Mercier F et al (2015a) GNSS satellite geometry and attitude models. Adv Space Res 56:1015–1029. https://doi.org/10.1016/j.asr.2015.06.019

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P, Hugentobler U (2015b) Enhanced solar radiation pressure modeling for Galileo satellites. J Geod 89:283–297. https://doi.org/10.1007/s00190-014-0774-0

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P, Darugna F (2017a) Semi-analytical solar radiation pressure modeling for QZS-1 orbit-normal and yaw-steering attitude. Adv Space Res 59:2088–2100. https://doi.org/10.1016/j.asr.2017.01.036

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P, Prange L et al (2017b) The multi-GNSS experiment (MGEX) of the International GNSS Service (IGS)—achievements, prospects and challenges. Adv Space Res 59:1671–1697. https://doi.org/10.1016/j.asr.2017.01.011

    Article  Google Scholar 

  • Pearlman MR, Noll CE, Pavlis EC et al (2019) The ILRS: approaching 20 years and planning for the future. J Geod 93:2161–2180. https://doi.org/10.1007/s00190-019-01241-1

    Article  Google Scholar 

  • Perosanz F, Loyer S, Mercier F, et al (2019) Galileo orbit and clock GRG solution and evaluation. In: EGU general assembly conference abstracts. p 17498

  • Prange L, Beutler G, Dach R et al (2020a) An empirical solar radiation pressure model for satellites moving in the orbit-normal mode. Adv Space Res 65:235–250. https://doi.org/10.1016/j.asr.2019.07.031

    Article  Google Scholar 

  • Prange L, Villiger A, Sidorov D et al (2020b) Overview of CODE’s MGEX solution with the focus on Galileo. Adv Space Res 66:2786–2798. https://doi.org/10.1016/j.asr.2020.04.038

    Article  Google Scholar 

  • Rebischung P, Altamimi Z, Springer T (2014) A collinearity diagnosis of the GNSS geocenter determination. J Geod 88:65–85. https://doi.org/10.1007/s00190-013-0669-5

    Article  Google Scholar 

  • Rodriguez-Solano CJ (2009) Impact of albedo modelling on GPS orbits. Master’s thesis, Technische Universität München

  • Sakic P, Mansur G, Viegas E, et al (2018) Towards a multi-constellation combination: improving the IGS orbit & clock combination software for MGEX products. IGS Workshop 2018, Oct. 29—Nov. 02. Wuhan, China

  • Sakic P, Mansur G, Mannel B (2020) A prototype for a multi-GNSS orbit combination. In: 2020 European navigation conference (ENC). Dresden, Germany, pp 1–11

  • Selmke I, Duan B, Hugentobler U (2018) Status of the TUM MGEX orbit and clock products. IGS Workshop 2018, Oct. 29–Nov. 02. Wuhan, China

  • Sidorov D, Dach R, Prange L, Jäggi A (2019) Enhanced orbit modeling of eclipsing Galileo Satellites. In: 7th International colloquium on scientific and fundamental aspects of GNSS. Zurich, Switzerland

  • Sośnica K, Zajdel R, Bury G et al (2020) Quality assessment of experimental IGS multi-GNSS combined orbits. GPS Solut 24:54. https://doi.org/10.1007/s10291-020-0965-5

    Article  Google Scholar 

  • Springer T, Beutler G (1993) Towards an official IGS orbit by combining the results of all IGS Processing Centers. In: Proceedings of the 1993 IGS workshop. Bern, Switzerland, pp 24–26

  • Steigenberger P, Hugentobler U, Loyer S et al (2015) Galileo orbit and clock quality of the IGS multi-GNSS Experiment. Adv Space Res 55:269–281. https://doi.org/10.1016/j.asr.2014.06.030

    Article  Google Scholar 

  • Steigenberger P, Fritsche M, Dach R et al (2016) Estimation of satellite antenna phase center offsets for Galileo. J Geod 90:773–785. https://doi.org/10.1007/s00190-016-0909-6

    Article  Google Scholar 

  • Steigenberger P, Thoelert S, Montenbruck O (2018) GNSS satellite transmit power and its impact on orbit determination. J Geod 92:609–624. https://doi.org/10.1007/s00190-017-1082-2

    Article  Google Scholar 

  • Tan C, Chen G, Wei N et al (2016) Combined satellite orbits of the iGMAS analysis centers: method and precision. Geomat Inf Sci Wuhan Univ 41:1469–1475

    Google Scholar 

  • Villiger A, Prange L, Dach R, et al (2018) Consistency of antenna products in the MGEX environment. IGS Workshop 2018, Oct 29–Nov 02. Wuhan, China

  • Villiger A, Prange L, Dach R, et al (2019) Satellite and receiver chamber calibrated antenna pattern for TRF scale determination. In: 7th International colloquium on scientific and fundamental aspects of GNSS 2019. Zurich, Switzerland

  • Wang C, Guo J, Zhao Q, Liu J (2018) Yaw attitude modeling for BeiDou I06 and BeiDou-3 satellites. GPS Solut 22:117. https://doi.org/10.1007/s10291-018-0783-1

    Article  Google Scholar 

  • Wang C, Guo J, Zhao Q, Liu J (2019) Empirically derived model of solar radiation pressure for BeiDou GEO satellites. J Geod 93:791–807. https://doi.org/10.1007/s00190-018-1199-y

    Article  Google Scholar 

  • Yan X, Liu C, Huang G et al (2019) A priori solar radiation pressure model for BeiDou-3 MEO satellites. Remote Sens 11:1605. https://doi.org/10.3390/rs11131605

    Article  Google Scholar 

  • Zajdel R, Sośnica K, Bury G et al (2020) System-specific systematic errors in earth rotation parameters derived from GPS, GLONASS, and Galileo. GPS Solut 24:74. https://doi.org/10.1007/s10291-020-00989-w

    Article  Google Scholar 

  • Zhao Q, Chen G, Guo J et al (2018) An a priori solar radiation pressure model for the QZSS Michibiki satellite. J Geod 92:109–121. https://doi.org/10.1007/s00190-017-1048-4

    Article  Google Scholar 

  • Zhou W, Cai H, Chen G et al (2022) Multi-GNSS combined orbit and clock solutions at iGMAS. Sensors 22:457. https://doi.org/10.3390/s22020457

    Article  Google Scholar 

  • Zhu SY, Massmann F-H, Yu Y, Reigber Ch (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76:668–672. https://doi.org/10.1007/s00190-002-0294-1

    Article  Google Scholar 

Download references

Acknowledgements

The IGS MGEX and its analysis centres are greatly acknowledged for providing the Multi-GNSS products. We also thank the ILRS for providing laser ranging observations. This work was supported by the National Nature Science Foundation of China (nos. 41974035, 42030109, 42204019), the Young Elite Scientists Sponsorship Program by CAST (no. 2018QNRC001) and the Fundamental Research Funds for the Central Universities (no. 2042021kf0064, 2042021kf0065).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the design of the study. GC and QZ came up with the idea of the study. GC carried out the experiments and drafted the manuscript, and JG revised the manuscript. All the authors participated in the experimental analysis, read and approved the manuscript.

Corresponding author

Correspondence to Jing Guo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Guo, J., Geng, T. et al. Multi-GNSS orbit combination at Wuhan University: strategy and preliminary products. J Geod 97, 41 (2023). https://doi.org/10.1007/s00190-023-01732-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-023-01732-2

Keywords

Navigation