Skip to main content

Advertisement

Log in

TropNet: a deep spatiotemporal neural network for tropospheric delay modeling and forecasting

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Water vapor plays an essential role in regulating the earth’s weather and climate, and the tropospheric delays caused by water vapor are one of the error sources in space geodetic techniques. Attributing to the enhancement of the spatiotemporal resolution of satellite observations and the availability of model simulation data, the fusion of the two datasets provides a promising opportunity to improve the performance of tropospheric delay modeling and forecasting. In this contribution, a tropospheric delay network (TropNet) model is developed based on deep learning method to forecast the zenith wet delays (ZWD) by combining information provided by the Geostationary Operational Environmental Satellite-R series and the global forecast system (GFS). The performance of the tropospheric delays predicted from TropNet is assessed with tropospheric products derived from GNSS. The results demonstrate that the TropNet predicted ZWD agree well with the GNSS-derived ZWD, and an accuracy of better than 11 mm is achieved for all the forecast lead times, showing an overall improvement of 15.5% when compared to the GFS ZWD. Moreover, intercomparisons with ZWD derived from radiosondes and Vienna Mapping Functions 3 (VMF3) are performed to further evaluate the performance of the TropNet model. Averaged RMS values equal to 14.9 mm and 13.9 mm are obtained when compared to radiosondes and VMF3. Furthermore, the TropNet model is able to forecast high-quality ZWD up to 6 h at a spatial resolution of 2 km and a temporal resolution of 1 h, which indicates a prospective potential for time-critical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The GOES-R CMI products are available from https://www.ncdc.noaa.gov/airs-web/search, the GFS datasets are available from https://rda.ucar.edu/datasets/ds084.1/, the GNSS tropospheric products are available from https://www.unavco.org/data/tropospheric/tropo-products/tropo-products.html, the SRTM topography data are available from https://srtm.csi.cgiar.org/srtmdata/, the VMF3 products are available from https://vmf.geo.tuwien.ac.at/, and the radiosonde products are available from https://www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-archive.

References

  • Balidakis K, Nilsson T, Zus F, Glaser S, Heinkelmann R, Deng Z, Schuh H (2018) Estimating integrated water vapor trends from VLBI, GPS, and numerical weather models: sensitivity to tropospheric parameterization. J Gerontol Ser A Biol Med Sci 123(12):6356–6372. https://doi.org/10.1029/2017jd028049

    Article  Google Scholar 

  • Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology—remote-sensing of atmospheric water-vapor using the global positioning system. J Gerontol Ser A Biol Med Sci 97(D14):15787–15801. https://doi.org/10.1029/92jd01517

    Article  Google Scholar 

  • Campana K, Caplan P, Halperin DJ, Lapenta B, Lilly S, Lin Y, Penny AB, Saha S, Tallapragada V, White GH (2019) The development and Success of NCEP’s global forecast system. In: 99th American meteorological society annual meeting. AMS

  • Chen B, Yu W, Wang W, Zhang Z, Dai W (2021) A global assessment of precipitable water vapor derived from GNSS zenith tropospheric delays with ERA5, NCEP FNL, and NCEP GFS products. Earth Space Sci 8(8):e2021EA001796

    Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE Jr, Vose RS, Rutledge G, Bessemoulin P, Broennimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli O, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28. https://doi.org/10.1002/qj.776

    Article  Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry—effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607. https://doi.org/10.1029/RS020i006p01593

    Article  Google Scholar 

  • Dousa J, Elias M (2014) An improved model for calculating tropospheric wet delay. Geophys Res Lett 41(12):4389–4397. https://doi.org/10.1002/2014gl060271

    Article  Google Scholar 

  • Dousa J, Elias M, Vaclavovic P, Eben K, Krc P (2018) A two-stage tropospheric correction model combining data from GNSS and numerical weather model. GPS Solut. https://doi.org/10.1007/s10291-018-0742-x

    Article  Google Scholar 

  • Fulbright JP, Kline E, Gunshor MM, Schmit TJ, Wu X, Pitts K, Pogorzala D (2020) Product maturity process for ABI L1b and CMI products for GOES-R Series. In: Neeck SP, Heliere A, Kimura T (ed) Sensors, systems, and next-generation satellites Xxiv

  • Gutman SI, Benjamin SG (2001) The role of ground-based GPS meteorological observations in numerical weather prediction. GPS Solut 4(4):16–24. https://doi.org/10.1007/pl00012860

    Article  Google Scholar 

  • Hadas T, Kaplon J, Bosy J, Sierny J, Wilgan K (2013) Near-real-time regional troposphere models for the GNSS precise point positioning technique. Meas Sci Technol 24(5):055003

    Article  Google Scholar 

  • Haiden T, Janousek M, Bidlot J, Buizza R, Ferranti L, Prates F, Vitart F (2018) Evaluation of ECMWF forecasts, including the 2018 upgrade. European Centre for Medium Range Weather Forecasts

  • He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034

  • Herring TA, Melbourne TI, Murray MH, Floyd MA, Szeliga WM, King RW, Phillips DA, Puskas CM, Santillan M, Wang L (2016) Plate boundary observatory and related networks: GPS data analysis methods and geodetic products. Rev Geophys 54(4):759–808. https://doi.org/10.1002/2016rg000529

    Article  Google Scholar 

  • Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  • Hofmeister A, Boehm J (2017) Application of ray-traced tropospheric slant delays to geodetic VLBI analysis. J Geodesy 91(8):945–964. https://doi.org/10.1007/s00190-017-1000-7

    Article  Google Scholar 

  • Kim S, Hong S, Joh M, Song S-K (2017) Deeprain: ConvLSTM network for precipitation prediction using multichannel radar data. arXiv preprint arXiv:1711.02316

  • Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980

  • Klein SA, Hall A, Norris JR, Pincus R (2017) Low-cloud feedbacks from cloud-controlling factors: a review. Surv Geophys 38(6):1307–1329. https://doi.org/10.1007/s10712-017-9433-3

    Article  Google Scholar 

  • Lagler K, Schindelegger M, Boehm J, Krasna H, Nilsson T (2013) GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40(6):1069–1073. https://doi.org/10.1002/grl.50288

    Article  Google Scholar 

  • Landskron D, Boehm J (2018) VMF3/GPT3: refined discrete and empirical troposphere mapping functions. J Geod 92(4):349–360. https://doi.org/10.1007/s00190-017-1066-2

    Article  Google Scholar 

  • Li X, Long D (2020) An improvement in accuracy and spatiotemporal continuity of the MODIS precipitable water vapor product based on a data fusion approach. Remote Sens Environ. https://doi.org/10.1016/j.rse.2020.111966

    Article  Google Scholar 

  • Li X, Dick G, Lu C, Ge M, Nilsson T, Ning T, Wickert J, Schuh H (2015) Multi-GNSS meteorology: real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations. IEEE Trans Geosci Remote Sens 53(12):6385–6393. https://doi.org/10.1109/tgrs.2015.2438395

    Article  Google Scholar 

  • Lindstrom S, Schmit TJ, Gunshor MM, Daniels J, Bah K, Goodman SJ (2017) Latest assessment of GOES-R (16) Advanced Baseline Imager (ABI) data quality from an application and training perspective. In: 2017 IEEE international geoscience and remote sensing symposium. IEEE, pp 283–285

  • Lu C, Zus F, Ge M, Heinkelmann R, Dick G, Wickert J, Schuh H (2016) Tropospheric delay parameters from numerical weather models for multi-GNSS precise positioning. Atmos Meas Tech 9(12):5965–5973. https://doi.org/10.5194/amt-9-5965-2016

    Article  Google Scholar 

  • Lu C, Li X, Zus F, Heinkelmann R, Dick G, Ge M, Wickert J, Schuh H (2017) Improving BeiDou real-time precise point positioning with numerical weather models. J Geod 91(9):1019–1029. https://doi.org/10.1007/s00190-017-1005-2

    Article  Google Scholar 

  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce (2015): NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Dataset. https://doi.org/10.5065/D65D8PWK

  • Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: an imperative style, high-performance deep learning library. In: 33rd conference on neural information processing systems (NeurIPS), Vancouver, Canada

  • Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 57(4):241–262. https://doi.org/10.1016/s0924-2716(02)00124-7

    Article  Google Scholar 

  • Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N, Prabhat (2019) Deep learning and process understanding for data-driven Earth system science. Nature 566(7743):195–204. https://doi.org/10.1038/s41586-019-0912-1

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Use Artif Satell Geod 15:247–251

    Google Scholar 

  • Schmit TJ, Griffith P, Gunshor MM, Daniels JM, Goodman SJ, Lebair WJ (2017) A closer look at the ABI on the GOES-R series. Bull Am Meteorol Soc 98(4):681–698. https://doi.org/10.1175/bams-d-15-00230.1

    Article  Google Scholar 

  • Schmit TJ, Li J, Lee SJ, Li Z, Dworak R, Lee Y-K, Bowlan M, Gerth J, Martin GD, Straka W, Baggett KC, Cronce L (2019) Legacy atmospheric profiles and derived products from GOES-16: validation and applications. Earth Space Sci 6(9):1730–1748. https://doi.org/10.1029/2019ea000729

    Article  Google Scholar 

  • Shi J, Xu C, Guo J, Gao Y (2014) Local troposphere augmentation for real-time precise point positioning. Earth Planets Space. https://doi.org/10.1186/1880-5981-66-30

    Article  Google Scholar 

  • Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, Canada

  • Sønderby CK, Espeholt L, Heek J, Dehghani M, Oliver A, Salimans T, Agrawal S, Hickey J, Kalchbrenner N (2020) MetNet: a neural weather model for precipitation forecasting. arXiv preprint arXiv:2003.12140

  • Sun Z, Zhang B, Yao Y (2019) An ERA5-based model for estimating tropospheric delay and weighted mean temperature over China with improved spatiotemporal resolutions. Earth Space Sci 6(10):1926–1941. https://doi.org/10.1029/2019ea000701

    Article  Google Scholar 

  • Toth C, Jozkow G (2016) Remote sensing platforms and sensors: a survey. ISPRS J Photogramm Remote Sens 115:22–36. https://doi.org/10.1016/j.isprsjprs.2015.10.004

    Article  Google Scholar 

  • Wilgan K, Hadas T, Hordyniec P, Bosy J (2017) Real-time precise point positioning augmented with high-resolution numerical weather prediction model. GPS Solut 21(3):1341–1353. https://doi.org/10.1007/s10291-017-0617-6

    Article  Google Scholar 

  • Yang J, Zhang Z, Wei C, Lu F, Guo Q (2017) Introducing the new generation of chinese geostationary weather satellites, Fengyun-4. Bull Am Meteorol Soc 98(8):1637–1658. https://doi.org/10.1175/bams-d-16-0065.1

    Article  Google Scholar 

  • Zheng F, Lou Y, Gu S, Gong X, Shi C (2018) Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning. J Geod 92(5):545–560. https://doi.org/10.1007/s00190-017-1080-4

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant 41974029) and the Fellowship of China Postdoctoral Science Foundation (2020M682481). The numerical calculations in this study have been carried out based on the supercomputing system in the Supercomputing Center of Wuhan University. We gratefully acknowledge the NOAA for offering the radiosonde data, the UNAVCO data center for supplying the GNSS tropospheric products, and the NCEP for offering the GFS products. We also would like to thank TU Vienna for providing the VMF3 tropospheric products.

Author information

Authors and Affiliations

Authors

Contributions

CXL and YXZ proposed the idea of this manuscript, designed and performed the experiments, and wrote the paper. ZLW and YSZ helped to perform the experiments and write the paper. QYW, ZW, and YXL contributed to the data pre-processing and analyzed the results. YXZ reviewed the manuscript and provided suggestions for improvements. All authors have reviewed the final submitted version of the manuscript.

Corresponding author

Correspondence to Yuxin Zheng.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Zheng, Y., Wu, Z. et al. TropNet: a deep spatiotemporal neural network for tropospheric delay modeling and forecasting. J Geod 97, 34 (2023). https://doi.org/10.1007/s00190-023-01722-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-023-01722-4

Keywords

Navigation