Anderson KD (2000) Determination of water level and tides using interferometric observations of GPS signals. J Atmos Oceanic Tech 17(8):1118–1127. https://doi.org/10.1175/1520-0426(2000)017%3c1118:DOWLAT%3e2.0.CO;2
Article
Google Scholar
Birkett C (1995) The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J Geophys Res 100(C10):25179–25204
Article
Google Scholar
Birkett C, Beckley B (2010) Investigating the performance of the Jason-2/OSTM radar altimeter over lakes and reservoirs. Mar Geodesy 33:204–238. https://doi.org/10.1080/01490419.2010.488983
Article
Google Scholar
Birkett C, Reynolds C, Beckley B, Doorn B (2011) From research to operations: the USDA global reservoir and Lake monitor. In: Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 19–50. https://doi.org/10.1007/978-3-642-12796-0_2
Chapter
Google Scholar
Crétaux J, Bergé-Nguyen M, Calmant S, Jamangulova N, Satylkanov R, Lyard F, Perosanz F, Verron J, Samine Montazem A, Guilcher G, Leroux D, Barrie J, Maisongrande P, Bonnefond P (2018) Absolute Calibration or validation of the altimeters on the sentinel-3a and the Jason-3 over Lake Issykkul (Kyrgyzstan). Remote Sens. https://doi.org/10.3390/rs10111679
Article
Google Scholar
Dunne S, Soulat F, Caparrini M, Germain O, Farrés E, Barroso X, Ruffini, G (2005) Oceanpal® a GPS-reflection coastal instrument to monitor tide and sea-state. In: Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS). Barcelona, Spain, July 23–28, 2007
Egido A (2017) Fully focussed SAR altimetry: theory and applications. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2016.2607122
Article
Google Scholar
Eser P, Rosen M (2000) Effects of artificially controlling levels of Lake Taupō, North Island, New Zealand, on the Stump Bay wetland. NZ J Mar Freshw Res 34(2):217–230. https://doi.org/10.1080/00288330.2000.9516928
Article
Google Scholar
Fayad I, Baghdadi N, Bailly JS, Frappart F, Zribi M (2020) Analysis of GEDI elevation data accuracy for inland waterbodies altimetry. Remote Sens 12(17):2714. https://doi.org/10.3390/rs12172714
Article
Google Scholar
Gao Q, Makhoul E, Escorihuela MJ, Zribi M, Quintana Seguí P, García P, Roca M (2019) Analysis of Retrackers’ Performances and water level retrieval over the Ebro River Basin using Sentinel–3. Remote Sens 11(6):718. https://doi.org/10.3390/rs11060718
Article
Google Scholar
GeoNet (2020) GNSS Time series notes. Geological and nuclear sciences New Zealand. https://www.geonet.org.nz/data/ supplementary/gnss_time_series_notes. Accessed on 14 Jul 2020
Hamling IJ, Hreinsdóttir S, Fournier N (2015) The ups and downs of the TVZ: geodetic observations of deformation around the Taupō Volcanic Zone, New Zealand. J Geophys Res Sol Earth 120(6):4667–4679. https://doi.org/10.1002/2015JB012125
Article
Google Scholar
Holden L, Wallace L, Beavan J, Fournier N, Cas R, Ailleres L, Silcock D (2015) Contemporary ground deformation in the Taupō Rift and Okataina Volcanic Centre from 1998 to 2011, measured using GPS. Geophys J Int 202(3):2082–2105. https://doi.org/10.1093/gji/ggv243
Article
Google Scholar
Kleinherenbrink K, Naeije M, Slobbe C, Egido A, Smith W (2020) The performance of CryoSat-2 fully focussed SAR for inland water level. Remote Sens Environ. https://doi.org/10.1016/j.rse.2019.111589
Article
Google Scholar
Kuo CY, Shum CK, Braun A, Mitrovica JX (2004) Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia. Geophys Res Lett. https://doi.org/10.1029/2003GL019106
Article
Google Scholar
Larson KM, Nievinski FG (2013) GPS snow sensing: results from the Earthscope plate boundary observatory. GPS Solut 17(1):41–52. https://doi.org/10.1007/s10291-012-0259-7
Article
Google Scholar
Larson KM, Löfgren JS, Haas R (2013a) Coastal sea level measurements using a single geodetic GPS receiver. Adv Space Res 51(8):1301–1310. https://doi.org/10.1016/j.asr.2012.04.017
Article
Google Scholar
Larson KM, Ray RD, Nievinski FG, Freymueller JT (2013b) The accidental tide gauge: a GPS reflection case study from Kachemak Bay Alaska. IEEE Geosci Remote Sens Lett 10(5):1200–1204
Article
Google Scholar
Larson KM, Ray RD, Williams SDP (2017) A 10-Year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge. J Atmos Oceanic Tech 34(2):295–307. https://doi.org/10.1175/JTECH-D-16-0101.1
Article
Google Scholar
Laxon S (1994) Sea ice altimeter processing scheme at EODC. Int J Remote Sens 15(4):915–924. https://doi.org/10.1080/01431169408954124
Article
Google Scholar
LINZ (2021) New Zealand Quasigeoid 2016 (NZGeoid2016). Land Information New Zealand. https://www.linz.govt.nz/data/geodetic-system/datums-projections-and-heights/vertical-datums/new-zealand-quasigeoid-2016-nzgeoid2016. Accessed on 11 Jul 2021
Löfgren J, Haas R, Johansson J (2009) Sea level monitoring using a GNSS-based tide gauge. In: Proceedings of the 2nd international colloquium—scientific and fundamental aspects of the galileo programme. Padua, Italy, 14–16 Oct, 2009
Löfgren J, Haas R, Scherneck HG (2014) Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. J Geodyn 80:66–80. https://doi.org/10.1016/j.jog.2014.02.012
Martin-Neira M (1993) A Passive Reflectometry and Interferometry System (PARIS): application to ocean altimetry. ESA J 17:331–355
Google Scholar
Mitchum G (2000) An improved calibration of satelilte altimetric heights using tide gauge sea levels with adustment for land motion. Mar Geod. https://doi.org/10.1080/01490410050128591
Article
Google Scholar
Neeck S, Lindstrom E, Vaze P, Fu L-L (2012) Surface Water and Ocean Topography (SWOT) mission. In Proceedings of SPIE 8533, sensors, systems, and next-generation satellites XVI. Edinburgh, United Kingdom, 19 Nov 2012. https://doi.org/10.1117/12.981151
Otway PM (1989) Vertical deformation monitoring by periodic water level observations, Lake Taupō, New Zealand. In: Latter J (ed) Volcanic hazards. Springer, Berlin, pp 561–574
Chapter
Google Scholar
Otway P, Blick G, Scott B (2002) Vertical deformation at Lake Taupō, New Zealand, from lake levelling surveys, 1979–99. NZ J Geol Geophys 45:121–132. https://doi.org/10.1080/00288306.2002.9514964
Article
Google Scholar
Peltier A, Hurst T, Scott B, Cayol V (2009) Structures involved in the vertical deformation at Lake Taupō (New Zealand) between 1979 and 2007: new insights from numerical modelling. J Volcanol Geotherm Res 181(3):173–184. https://doi.org/10.1016/j.jvolgeores.2009.01.017
Article
Google Scholar
Reinking J, Roggenbuck O, Even-Tzur G (2019) Estimating wave direction using terrestrial GNSS reflectometry. Remote Sens 11(19):11. https://doi.org/10.3390/rs11091027
Article
Google Scholar
Ricko M, Birkett C, Carton J, Crétaux J (2012) Intercomparison and validation of continental water level products derived from satellite radar altimetry. J Appl Remote Sens 6:1710. https://doi.org/10.1117/1.JRS.6.061710
Article
Google Scholar
Roesler C, Larson KM (2018) Software tools for GNSS interferometric reflectometry (GNSS-IR). GPS Solut. https://doi.org/10.1007/s10291-018-0744-8
Article
Google Scholar
Roussel N, Ramillien G, Frappart F, Darrozes J, Gay A, Biancale R, Striebig N, Hanquiez V, Bertin X, Allain D (2015) Sea level monitoring and sea state estimate using a single geodetic receiver. Remote Sens Environ 171:261–277. https://doi.org/10.1016/j.rse.2015.10.011
Article
Google Scholar
Santamaria-Gomez A, Watson C, Gravelle M, King M, Woppelmann G (2015) Levelling co-located GNSS and tide gauge stations using GNSS reflectometry. J Geod 89(3):241–258. https://doi.org/10.1007/s00190-014-0784-y
Article
Google Scholar
Santos-Ferreira A, da Silva J, Magalhaes J (2018) SAR mode altimetry observations of internal solitary waves in the Tropical Ocean part 1: case studies. Remote Sens 10(4):644. https://doi.org/10.3390/rs10040644
Article
Google Scholar
Schwatke C, Dettmering D, Bosch W, Seitz F (2015) DAHITI—an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol Earth Sci Syst 19(10):4345–4364. https://doi.org/10.5194/hess-19-4345-2015
Article
Google Scholar
Song MF, He XF, Wang XL, Zhou Y, Xu XY (2019) Study on the quality control for periodogram in the determination of water level using the GNSS-IR technique. Sensors. https://doi.org/10.3390/s19204524
Article
Google Scholar
Strandberg J, Hobiger T, Haas R (2016) Improving GNSS-R sea level determination through inverse modeling of SNR data. Radio Sci 51(8):1286–1296. https://doi.org/10.1002/2016RS006057
Article
Google Scholar
Sun J (2017) Ground-based GNSS-Reflectometry sea level and lake ice thickness measurements. PhD thesis dissertation, The Ohio State University, US
Treuhaft RN, Lowe ST, Zuffada C, Chao Y (2001) 2-cm GPS altimetry over Crater Lake. Geophys Res Lett 28(23):4343–4346. https://doi.org/10.1029/2001GL013815
Article
Google Scholar
Wallace LM, Beavan J, McCaffrey R, Darby D (2004) Subduction zone coupling and tectonic rotations in the North Island, New Zealand. J Geophys Res 109:B12406. https://doi.org/10.1029/2004JB003241
Article
Google Scholar
Watson C, White N, Church J, Burgette R, Tregoning P, Coleman R (2011) Absolute calibration in Bass Strait, Australia: TOPEX, Jason-1 and OSTM/Jason-2. Mar Geod 34:242–260. https://doi.org/10.1080/01490419.2011.584834
Article
Google Scholar
Yuan C, Gong P, Bai Y (2020) Performance assessment of ICESat-2 laser altimeter data for water-level measurement over lakes and reservoirs in China. Remote Sens 12(5):770. https://doi.org/10.3390/rs12050770
Article
Google Scholar