Skip to main content

Altimeter-derived marine gravity variations reveal the magma mass motions within the subaqueous Nishinoshima volcano, Izu–Bonin Arc, Japan

Abstract

Variations of marine gravity reflect mass changes in Earth’s interior, including magma motions during volcanic eruption, which manifest in submarine mass transports. Absolute gravimeters have been used to detect and study evolutions of magma mass motions, however, only for land volcanoes. Here for the first time, we used radar altimeter-derived time-varying marine gravity fields, corresponding to before, during and after the Nishinoshima volcanic eruption, Izu–Bonin arcs near Japan, to quantify the evolution of undersea volcanic magma mass motions. The magma depths were observed to become shallower and <  2 km, which are almost in exact accordance with seismic results. We find that the magma volume decreased beneath the Nishinoshima volcano, while increased or being fed by deeper reservoirs to the east and northeast of Nishinoshima. We conclude that the Nishinoshima volcano may continue to be active in the future. This study highlights the use of satellite radar altimetry as an innovative and viable tool to study subaqueous volcanism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

available at the following FTP site: ftp://topex.ucsd.edu/pub/archive/grav/

Fig.4
Fig. 5
Fig. 6

Data availability

The radar altimeter-derived marine gravity data, topography data and gravity error used in this paper were obtained from ftp://topex.ucsd.edu/pub/archive/grav/, and the GEBCO 2019 Grid are available at https://www.gebco.net/. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Abbas MA, Fedi M (2014) Automatic DEXP imaging of potential fields independent of the structural index. Geophys J Int 199(3):1625–1632. https://doi.org/10.1093/gji/ggu354

    Article  Google Scholar 

  2. Andersen OB, Knudsen P, Berry PAM (2009) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84(3):191–199. https://doi.org/10.1007/s00190-009-0355-9

    Article  Google Scholar 

  3. Andersen OB, Knudsen P, Kenyon S, Holmes S, Factor JK (2019) Evaluation of the Global Altimetric Marine Gravity Field DTU15: Using Marine Gravity and GOCE Satellite Gravity. In L. Sánchez, & J. T. Freymueller (Eds.), International Symposium on Advancing Geodesy in a Changing World - Proceedings of the IAG Scientific Assembly, 2017 (pp. 77–81). Springer. International Association of Geodesy Symposia Vol. 149. https://doi.org/10.1007/1345_2018_52

  4. Bagnardi M, Poland MP, Carbone D, Baker S, Battaglia M, Amelung F (2014) Gravity changes and deformation at Kīlauea volcano, Hawai’i, associated with summit eruptive activity, 2009–2012. J Geophys Res Solid Earth 119(9):7288–7305. https://doi.org/10.1002/2014JB011506

    Article  Google Scholar 

  5. Baniamerian J, Fedi M, Oskooi B (2016) Research note: compact depth from extreme points: a tool for fast potential field imaging. Geophys Prospect 64(5):1386–1398. https://doi.org/10.1111/1365-2478.12365

    Article  Google Scholar 

  6. Carbone D, Poland MP (2012) Gravity fluctuations induced by magma convection at Kilauea volcano. Hawai’i Geology 40(9):803–806. https://doi.org/10.1130/g33060.1

    Article  Google Scholar 

  7. Cella F, Fedi M (2012) Inversion of potential field data using the structural index as weighting function rate decay. Geophys Prospect 60(2):313–336. https://doi.org/10.1111/j.1365-2478.2011.00974.x

    Article  Google Scholar 

  8. Cella F, Fedi M, Florio G (2010) Toward a full multiscale approach to interpret potential fields. Geophys Prospect 57(4):543–557. https://doi.org/10.1111/j.1365-2478.2009.00808.x

    Article  Google Scholar 

  9. Chandler MT, Wessel P (2008) Improving the quality of marine geophysical track line data: along-track analysis. J Geophys Res Solid Earth. https://doi.org/10.1029/2007JB005051

    Article  Google Scholar 

  10. Chen M, Fang J, Cui R (2018) Lithospheric structure of the South China Sea and adjacent regions: results from potential field modelling. Tectonophysics 726:62–72. https://doi.org/10.1016/j.tecto.2018.01.021

    Article  Google Scholar 

  11. Fairhead JD, Green CM, Odegard ME (2001) Satellite-derived gravity having an impact on marine exploration. Lead Edge 20(8):873–876. https://doi.org/10.1190/1.1487298

    Article  Google Scholar 

  12. Fedi M (2007) DEXP: a fast method to determine the depth and the structural index of potential fields sources. Geophysics 72(1):I1–I11. https://doi.org/10.1190/1.2399452

    Article  Google Scholar 

  13. Fedi M, Cella F, D’Antonio M, Florio G, Paoletti V, Morra V (2018) Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples. Italy Sci Rep 8(1):8229. https://doi.org/10.1038/s41598-018-26346-z

    Article  Google Scholar 

  14. Fedi M, Florio G, Quarta TA (2009) Multiridge analysis of potential fields: geometric method and reduced Euler deconvolution. Geophysics 74(4):L53–L65. https://doi.org/10.1190/1.3142722

    Article  Google Scholar 

  15. Forsberg R, Olesen AV (2010) Airborne gravity field determination. In: Xu G (ed) Sciences of geodesy-I. Springer, NY, pp 83–104. https://doi.org/10.1007/978-3-642-11741-1_3

    Chapter  Google Scholar 

  16. Fullea J, Fernàndez M, Zeyen H (2008) FA2BOUG—A FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies: application to the Atlantic-Mediterranean transition zone. Comput Geosci 34(12):1665–1681. https://doi.org/10.1016/j.cageo.2008.02.018

    Article  Google Scholar 

  17. Global Volcanism Program (2017) Report on Nishinoshima (Japan). In: Crafford AE, Venzke E (eds) Bulletin of the global volcanism network, vol 42. Smithsonian Institution, p 11. https://doi.org/10.5479/si.GVP.BGVN201711-284096

    Chapter  Google Scholar 

  18. Global Volcanism Program (2018) Report on Nishinoshima (Japan). In: Krippner JB, Venzke E (eds) Bulletin of the global volcanism network, vol 43. Smithsonian Institution, p 9. https://doi.org/10.5479/si.GVP.BGVN201809-284096

    Chapter  Google Scholar 

  19. Hsiao YS, Kim K, Kim JW, Lee BY, Hwang C (2011) Bathymetry estimation using the gravity-geologic method: an investigation of density contrast predicted by the downward continuation method. Terres Atmos Ocean Sci 22(3):347–358. https://doi.org/10.3319/TAO.2010.10.13.01(Oc)

    Article  Google Scholar 

  20. Hwang C, Chang ETY (2014) Seafloor secrets revealed. Science 346(6205):32–33. https://doi.org/10.1126/science.1260459

    Article  Google Scholar 

  21. Ito K (2018) Geophysical and geological characteristics of Nishinoshima volcano obtained before the 2013 eruption. Report of Hydrographic and Oceanographic Researches. 55:1–19. http://hdl.handle.net/1834/15520 (in Japanese with English abstract)Japan Coast Guard (2016) Nishinoshima volcano. Retrieved from http://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/kaiikiDB/kaiyo18-e1.htm

  22. Johnson DJ, Eggers AA, Bagnardi M, Battaglia M, Poland MP, Miklius A (2010) Shallow magma accumulation at Kilauea volcano, Hawai’i, revealed by microgravity surveys. Geology 38(12):1139–1142. https://doi.org/10.1130/G31323.1

    Article  Google Scholar 

  23. Kaneko T, Maeno F, Yasuda A, Takeo M, Takasaki K (2019) The 2017 Nishinoshima eruption: combined analysis using Himawari-8 and multiple high-resolution satellite images. Earth Planets Space 71:140. https://doi.org/10.1186/s40623-019-1121-8

    Article  Google Scholar 

  24. Kazama T, Okubo S, Sugano T, Matsumoto S, Sun W, Tanaka Y, Koyama E (2015) Absolute gravity change associated with magma mass movement in the conduit of Asama Volcano (Central Japan), revealed by physical modeling of hydrological gravity disturbances. J Geophys Res Solid Earth 120(2):1263–1287. https://doi.org/10.1002/2014JB011563

    Article  Google Scholar 

  25. Natsuaki R, Watanabe M, Motohka T, Ohki M, Shimada M (2015) Assessment of the stability for active volcanic small island by use of SAR interferometry: a case study in Nishinoshima island. IEEE, Synthetic Aperture Radar. https://doi.org/10.1109/APSAR.2015.7306334

    Book  Google Scholar 

  26. Nishida K, Ichihara M (2016) Real-time infrasonic monitoring of the eruption at a remote island volcano using seismoacoustic cross correlation. Geophys J Int 204(2):748–752. https://doi.org/10.1093/gji/ggv478

    Article  Google Scholar 

  27. Okada C, Ono T, Hamasaki S, Takahashi H, Morishita T, Itio H et al (2016) Preliminary result of the ocean bottom seismographic observation at Nishinoshima volcano. Rep Hydrogr Oceanogr Res 53:29–44 ((in Japanese with English abstract))

    Google Scholar 

  28. Pachauri RK, Meyer LA (eds), (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland, pp 151

  29. Panet I, Flury J, Biancale R, Gruber T, Johannessen J, Broeke MR et al (2013) Earth system mass transport mission (e.motion): a concept for future earth gravity field measurements from space. Surveys Geophys 34(2):141–163. https://doi.org/10.1007/s10712-012-9209-8

    Article  Google Scholar 

  30. Paoletti V, Ialongo S, Florio G, Fedi M, Cella F (2013) Self-constrained inversion of potential fields. Geophys J Int 195(2):854–869. https://doi.org/10.1093/gji/ggt313

    Article  Google Scholar 

  31. Paoletti V, Passaro S, Fedi M, Marino C, Tamburrino S, Ventura G (2016) Subcircular conduits and dikes offshore the Somma-Vesuvius volcano revealed by magnetic and seismic data. Geophys Res Lett. https://doi.org/10.1002/2016GL070271

    Article  Google Scholar 

  32. Rousset D, Lesquer A, Bonneville A, Lénat JF (1989) Complete gravity study of Piton de la fournaise volcano. Reunion Island J Volcanol Geotherm Res 36(1–3):0–52. https://doi.org/10.1016/0377-0273(89)90004-8

    Article  Google Scholar 

  33. Rymer H, Brown GC (1986) Gravity fields and the interpretation of volcanic structures: geological discrimination and temporal evolution. J Volcanol Geotherm Res 27(3–4):0–254. https://doi.org/10.1016/0377-0273(86)90015-6

    Article  Google Scholar 

  34. Sandwell D, Garcia E, Soofi K, Wessel P, Chandler M, Smith WHF (2013) Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. Lead Edge 32(8):892–899. https://doi.org/10.1190/tle32080892.1

    Article  Google Scholar 

  35. Sandwell DT, Harper H, Tozer B, Smith WHF (2019) Gravity field recovery from geodetic altimeter missions. Adv Space Res. https://doi.org/10.1016/j.asr.2019.09.011

    Article  Google Scholar 

  36. Sandwell DT, Muller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67. https://doi.org/10.1126/science.1258213

    Article  Google Scholar 

  37. Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res Solid Earth. https://doi.org/10.1029/2008jb006008

    Article  Google Scholar 

  38. Sano T, Shirao M, Tani K, Tsutsumi Y, Kiyokawa S, Fujii T (2016) Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc. Japan J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2016.03.004

    Article  Google Scholar 

  39. Shinohara M, Ichihara M, Sakai S, Yamada T, Takeo M, Sugioka H et al (2017) Continuous seismic monitoring of Nishinoshima volcano, Izu-Ogasawara, by using long-term ocean bottom seismometers. Earth, Planets Space 69(1):159. https://doi.org/10.1186/s40623-017-0747-7

    Article  Google Scholar 

  40. Shum CK, Ries JC, Tapley BD (1995) The accuracy and applications of satellite altimetry. Geophys J Roy Astron Soc 121(2):321–336. https://doi.org/10.1186/10.1111/j.1365-246X.1995.tb05714.x

    Article  Google Scholar 

  41. Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277(5334):1956–1962. https://doi.org/10.1126/science.277.5334.1956

    Article  Google Scholar 

  42. Sun W, Okubo S (1993) Surface potential and gravity changes due to internal dislocations in a spherical Earth I. Theory for a point dislocation. Geophys J Int 114(3):569–592. https://doi.org/10.1111/j.1365-246X.1993.tb06988.x

    Article  Google Scholar 

  43. Takagi A, Nagaoka Y (2017) Seismicity recorded by ocean bottom seismometers around Nishinoshima. In: monitoring studies of the 2013–2015 Nishinoshima eruption vol 78. Technical Reports of the Meteorological Research Institute pp 59–69. (in Japanese). https://doi.org/10.11483/mritechrepo

  44. Tamura Y, Sato T, Fujiwara T, Kodaira S, Nichols A (2016) Advent of continents: a new hypothesis. Sci Rep 6(1):33517. https://doi.org/10.1038/srep33517

    Article  Google Scholar 

  45. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505. https://doi.org/10.1126/science.1099192

    Article  Google Scholar 

  46. Tapley B, Watkins M, Flechtner F, Reigber C, Bettadpur S, Rodell M et al (2019) Contributions of GRACE to understanding climate change. Nature Clim Change. https://doi.org/10.1038/s41558-019-0436-2

    Article  Google Scholar 

  47. Zhang S (2016) Sandwell DT (2016) retracking of SARAL/Altika radar altimetry waveforms for optimal gravity field recovery. Mar Geod. https://doi.org/10.1080/01490419.2016.1265032

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge David Sandwell, University of California at San Diego, for providing the radar altimeter-derived gravity data used in this study. The IHO (International Hydrographic Organization) provided the Compilation Group (2019) GEBCO 2019 Grid (https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e). This work is supported by the National Natural Science Foundation of China (Grant Nos. 41774022, 41621091, and 41931076) and the Basic Frontier Science Research Program of Chinese Academy of Sciences (Grant No. ZDBS-LY-DQC028).

Author information

Affiliations

Authors

Contributions

Lifeng Bao and C.K. Shum conceived the study. The data processing and the image rendering were conducted by Qianqian Li. The analysis of the results was implemented by Qianqian Li, Lifeng Bao and C.K. Shum, and the initial draft of the manuscript was written by Qianqian Li with improvements and edits from Lifeng Bao and C.K. Shum.

Corresponding author

Correspondence to Lifeng Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 335 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Bao, L. & Shum, C.K. Altimeter-derived marine gravity variations reveal the magma mass motions within the subaqueous Nishinoshima volcano, Izu–Bonin Arc, Japan. J Geod 95, 46 (2021). https://doi.org/10.1007/s00190-021-01488-7

Download citation

Keywords

  • Satellite altimetry
  • Time variable gravity
  • Subaqueous volcano
  • Magma motions
  • Nishinoshima