Skip to main content
Log in

Stochastic model reliability in GNSS baseline solution

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

GNSS observations stochastic model influences all subsequent stages of data processing, from the possibility to reach the optimal parameters estimation, to the reliability and quality control of the solution. Nowadays, an uncontrolled use of GNSS stochastic models is common for both data processing and simulation missions, especially in commercial GNSS software packages. As a result, the variance–covariance matrices that are derived in the processing are inadequate and cause incorrect interpretations of the results. A proper method to evaluate the reliability of the stochastic model is needed to reflect the confidence level in statistic testing and simulation mission efforts. In this contribution, a novel method for evaluating the statistical nature of GNSS stochastic model is presented. The method relies on the deterministic nature of the integer ambiguity variable to examine and express the expected multinormal distribution of the double-difference adjustment results. The suggested method was used with a controlled experiment and 24 h of observations data to investigate how the statistical nature of the stochastic model is affected by different baseline lengths. The results indicate that as the baseline length increases, the stochastic model is less predictable and exposed to irregularities in the observation’s precision. Additionally, the reliability of the integer ambiguity resolution success rate (SR) was tested as part of the stochastic model evaluation. The results show a dramatic degradation in the SR prediction level when using an inadequate stochastic model, which suggests using extra caution when handling this parameter unless high-confidence reliable stochastic model is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

All data analyzed during this study are included in this published article and its supplementary information files.

Code availability

The code generated during the current study is available from the corresponding author on reasonable request.

References

  • Amiri-Simkooei AR (2007) Least-squares variance component estimation: theory and GPS applications. PhD thesis, Delft University of Technology, Delft, The Netherlands

  • Amiri-Simkooei AR, Teunissen PJG, Tiberius CCJM (2009) Application of least-squares variance component estimation to GPS observables. J Surv Eng 135(4):149–160

    Article  Google Scholar 

  • Amiri-Simkooei AR, Zangeneh-Nejad F, Asgari J (2013) Least- squares variance component estimation applied to GPS geometry-based observation model. J Surv Eng 139(4):176–187

    Article  Google Scholar 

  • Amiri-Simkooei AR, Jazaeri S, Zangeneh-Nejad F, Asgari J (2016) Role of stochastic model on GPS integer ambiguity resolution success rate. GPS Solut 20(1):51–61

    Article  Google Scholar 

  • Bona P (2000) Precision, cross correlation, and time correlation of GPS phase and code observations. GPS Solut 4(2):3–13

    Article  Google Scholar 

  • Brown LD, Cai TT, DasGupta A (2001) Interval estimation for a binomial proportion. Stat Sci 16(2):101–133

  • Cetin S, Aydin C, Dogan U (2018) Comparing GPS positioning errors derived from GAMIT/GLOBK and Bernese GNSS software packages: a case study in CORS-TR in Turkey. Surv Rev 22:1–11

    Google Scholar 

  • Cooper MAR (1987) Control surveys in civil engineering. Nichols Pub Co., New York

    Google Scholar 

  • Dach R, Lutz S, Walser P, Fridez P (2015) Bernese GNSS software version 5.2. Astronomical Institute, University of Bern

  • El-Rabbany A, Kleusberg A (2003) Effect of temporal physical correlation on accuracy estimation in GPS relative positioning. J Surv Eng 129(1):28–32

    Article  Google Scholar 

  • Erdogan B, Dogan AH (2019) Scaling of the variance covariance matrix obtained from Bernese software. Acta Geod Geoph 54(2):197–211

    Article  Google Scholar 

  • Euler HJ, Goad C (1991) On optimal filtering of GPS dual frequency observations without using orbit information. Bull Geod 65:130–143

    Article  Google Scholar 

  • Geirsson H (2003) Continuous GPS measurements in Iceland 1999–2002. MSc, University of Iceland, Reykjavik

  • Grafarend E, Schaffrin B (1974) Unbiased Free Net Adjustment. Surv Rev 22(171):200–218

    Article  Google Scholar 

  • Han S, Rizos C (1995a) Selection and scaling of simultaneous baselines for GPS network adjustment, or correct procedures for processing trivial baselines. Geomat Res Australas 63:51–66

    Google Scholar 

  • Han S, Rizos C (1995b) Standardisation of the variance-covariance matrix for GPS rapid static positioning. Geomat Res Australas 62:37–54

    Google Scholar 

  • Herring TA, King RW, McClusky SC (2010) Introduction to Gamit/Globk. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Hou Y, Verhagen S, Wu J (2016) An efficient implementation of fixed failure-rate ratio test for GNSS ambiguity resolution. Sensors 16(7):945

    Article  Google Scholar 

  • Jonkman NF, Teunissen PJG, Joosten P, Odijk D (2000) GNSS long baseline ambiguity resolution: impact of a third navigation frequency. Geodesy beyond 2000—the challenges of the first decade. Int Assoc Geod Symp 121:349–354

    Article  Google Scholar 

  • Kashani I, Wielgosz P, Grejner-Brzezinska DA (2004) On the reliability of the VCV matrix: a case study based on GAMIT and Bernese GPS Software. GPS Solut 8(4):193–199

    Article  Google Scholar 

  • Koch KR (1986) Maximum likelihood estimate of variance components. Boll Geod Sci Affini 60:329–338 (Ideas by A.J. Pope)

    Google Scholar 

  • Koch KR (1988) Parameter estimation and hypothesis testing in linear models. Springer, New York

    Book  Google Scholar 

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin

    Book  Google Scholar 

  • Landskron D, Böhm J (2018) VMF3/GPT3: refined discrete and empirical troposphere mapping functions. J Geod 92(4):349–360

    Article  Google Scholar 

  • Li B (2016) Stochastic modeling of triple-frequency BeiDou signals: estimation, assessment and impact analysis. J Geod 90(7):593–610

    Article  Google Scholar 

  • Li B, Lou L, Shen Y (2015) GNSS elevation-dependent stochastic modeling and its impacts on the statistic testing. J Surv Eng 142(2):04015012

    Article  Google Scholar 

  • Li B, Shen Y, Lou L (2011) Efficient estimation of variance and covariance components: a case study for GPS stochastic model evalua- tion. IEEE Trans Geosci Remote Sens 49(1):203–210

    Article  Google Scholar 

  • Li B, Shen Y, Xu P (2008) Assessment of stochastic models for GPS measurements with different types of receivers. Chin Sci Bull 53(20):3219–3225

    Google Scholar 

  • Li B, Zhang L, Verhagen S (2017) Impacts of BeiDou stochastic model on reliability: overall test, w-test and minimal detectable bias. GPS Solut 21(3):1095–1112

    Article  Google Scholar 

  • Liu X (2002) A comparison of stochastic models for GPS single differential kinematic positioning. In: 15th int. technical meeting, ION GPS 2002, Portland, OR

  • Luo X, Mayer M, Heck B (2011) On the probability distribution of GNSS carrier phase observations. GPS Solut 15(4):369–379

    Article  Google Scholar 

  • Milbert D (2005) Influence of pseudorange accuracy on phase ambiguity resolution in various GPS modernization scenarios. Navigation 52(1):29–38

    Article  Google Scholar 

  • Odijk D, Arora BS, Teunissen PJG (2014) Predicting the success rate of long-baseline GPS+ Galileo (partial) ambiguity resolution. J Navig 67(3):385–401

    Article  Google Scholar 

  • Odolinski R (2012) Temporal correlation for network RTK positioning. GPS Solut 16(2):147–155

    Article  Google Scholar 

  • Rao CR (1971) Estimation of variance and covariance components-MINQUE theory. J Multivar Anal 1(3):257–275

    Article  Google Scholar 

  • Sauro J, Lewis JR (2005) Estimating completion rates from small samples using binomial confidence intervals: comparisons and recommendations. In: Proceedings of the human factors and ergonomics society annual meeting, vol 49, no 24. SAGE Publications, Los Angeles, CA, pp 2100–2103

  • Schaer S, Gurtner W, Feltens J (1998) IONEX: the IONosphere map exchange format version 1. In: Proceedings of the IGS AC workshop, Darmstadt, Germany, February 9–11, pp 233–24

  • Teunissen PJG (1988) Towards a least-squares framework for adjusting and testing of both functional and stochastic model. In: Internal research memo, Geodetic Computing Centre, Delft. A reprint of original 1988 report is also available in 2004, no. 26

  • Teunissen PJG (1993) Least-squares estimation of the integer GPS ambiguities. In: Invited lecture, section IV theory and methodology, IAG general meeting, Beijing, China

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1):65–82

    Article  Google Scholar 

  • Teunissen PJG (1998a) On the integer normal distribution of the GPS ambiguities. Artif Satell 33(2):49–64

    Google Scholar 

  • Teunissen PJG (1998b) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72(10):606–612

    Article  Google Scholar 

  • Teunissen PJG (1999) An optimality property of the integer least squares estimator. J Geod Berlin 73(11):587–593

    Article  Google Scholar 

  • Teunissen PJG (2000) The success rate and precision of GPS ambiguities. J Geod 74(3):321–326

    Article  Google Scholar 

  • Teunissen PJG (2006) Testing theory: an introduction, 2nd edn. Delft University Press, Delft

    Google Scholar 

  • Teunissen PJG (2007) Influence of ambiguity precision on the success rate of GNSS integer ambiguity bootstrapping. J Geod 81(5):351–358

    Article  Google Scholar 

  • Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J Geod Berlin 82(2):65–82

    Article  Google Scholar 

  • Teunissen PJG, Jonkman NF, Tiberius C (1998) Weighting GPS dual frequency observations: bearing the cross of cross-correlation. GPS Solut 2(2):28–37

    Article  Google Scholar 

  • Teunissen PJG, Simons D, Tiberius C (2008) Probability and observation theory. In: Lecture notes AE2-EO1, faculty of aerospace engineering, Delft Univ. of Technology, Delft, The Netherlands.

  • Tiberius C, Borre K (2000) Are GPS data normally distributed. In: Geodesy beyond 2000. Springer, Berlin, Heidelberg, pp 243–248

  • Tiberius C, Kenselaar F (2000) Estimation of the stochastic model for GPS code and phase observables. Surv Rev 35(277):441–454

    Article  Google Scholar 

  • Verhagen S (2005) On the reliability of integer ambiguity resolution. Navigation 52(2):99–110

    Article  Google Scholar 

  • Verhagen S, Li B (2012) LAMBDA software package: MATLAB implementation, Version 3.0. Delft Univ. of Technology and Curtin Univ., Perth, Australia.

  • Wang J, Satirapod C, Rizos C (2002) Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. J Geod Berlin 76(2):95–104

    Article  Google Scholar 

  • Yang Y, Xu T, Song L (2005) Robust estimation of variance components with application in global positioning system network adjustment. J Surv Eng 131(4):107–112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.B. and G.E.T contributed to methodology. A.B. performed formal analysis and investigation. A.B. contributed to writing—original draft preparation. G.E.T contributed to writing—review and editing. G.E.T was involved in supervision.

Corresponding author

Correspondence to Aviram Borko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borko, A., Even-Tzur, G. Stochastic model reliability in GNSS baseline solution. J Geod 95, 20 (2021). https://doi.org/10.1007/s00190-021-01472-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-021-01472-1

Keywords

Navigation