Skip to main content

Advertisement

Log in

High-precision Ocean navigation with single set of BeiDou short-message device

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The high-precision navigation and positioning with GNSS has become widely used in various applications with the development of new GNSS systems, such as BeiDou and Galileo. For marine applications, high-precision navigation and positioning with GNSS is still a challenge since the requirement of the communication link is a problem on sea. Both DGNSS and RTK require data communication between base station on land and the rover station on sea. The data communication can be performed by providers of the marine satellite communication service, such as Intelsat, Eutelsat, Telesat and the SpaceX. However, the cost is too high to be afforded by ordinary GNSS users. The BeiDou short-message service provides an efficient way for the data communication between reference station on land and rover station on sea. Each BeiDou message length is limited to 78 bytes, and the communication frequency is limited to 60 s. Based on the BeiDou short-message service, the high-precision positioning has been achieved in previous studies. However, multiple set of short-message devices are used and the cost is still high. In this research, based on dual-frequency GNSS data, we propose the high-precision navigation on sea with single set of short-message device. The space-relative and time-relative positioning methods are integrated to reduce the data requirements. That is, first, every minute precise position is acquired with traditional space-relative positioning method and then the position of the other epochs is derived with time-relative positioning method. The experimental results based on buoy observations on sea show that the navigation accuracy can reach up to cm level in both horizontal and vertical directions. The proposed method can meet the requirements of different marine applications such as tide monitoring and wave monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

Download references

Acknowledgement

The research was substantially supported by Key Program of National Natural Science Foundation of China (Grant No. 41631073), funded by Shenzhen Science and Technology Innovation Commission (Project No. JCYJ20170818104822282), Natural Science Foundation of Shandong Province, China (Grant No. ZR2016DM15, ZR2016DQ01, ZR2017QD002 and ZR2017MD021), National Natural Science Foundation of China (Grant No. 41704021, 41701513 and 41604027), the Fundamental Research Funds for the Central Universities (Grant No. 18CX02064A, 18CX02054A and 16CX02026A) and Qingdao National Laboratory for Marine Science and Technology (Grant No. QNLM2016ORP0401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duojie Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Sun, Z., Weng, D. et al. High-precision Ocean navigation with single set of BeiDou short-message device. J Geod 93, 1589–1602 (2019). https://doi.org/10.1007/s00190-019-01273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01273-7

Keywords

Navigation