Skip to main content
Log in

Version of a glass retroreflector satellite with a submillimeter “target error”

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Specific features of spherical retroreflector arrays for high-precision laser ranging are considered, and errors in distance measurements are analyzed. A version of a glass retroreflector satellite with a submillimeter “target error” is proposed. Its cube-corner reflectors are located in recessions to reduce the effective angular aperture, and their faces have a dielectric interference coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling non-linear station motions. J Geophys Res 121(8):6109–6131

    Article  Google Scholar 

  • Arnold DA (1978) Optical and infrared transfer function of the LAGEOS retroreflector array. Smithsonian Astrophysical Observatory, Cambridge

    Google Scholar 

  • Arnold D (1979) Methods of calculating retroreflector-array transfer functions. Smithsonian astrophysical observatory special report, p 382

  • Bach H, Neuroth N (1998) The properties of optical glass. Springer, Berlin, p 414

    Book  Google Scholar 

  • Bloßfeld M, Kehm A, Rudenko S, Angermann D (2018) The role of laser ranging for the global geodetic observing system GGOS. In: 21st international workshop on laser ranging, Canberra, Australia

  • Crabtree K, Chipman R (2010) Polarization conversion cube-corner retroreflector. Appl Opt 49(30):5882–5890

    Article  Google Scholar 

  • Degnan JJ (1993) Millimeter accuracy satellite laser ranging: a review. Contrib Space Geod Geodyn Technol AGU Geodyn Ser 25:133–162

    Article  Google Scholar 

  • Dennis MR, O’Holleran K, Padgett MJ (2009) Singular optics: optical vortices and polarization singularities. Prog Opt 53:293–363

    Article  Google Scholar 

  • Oleyink I (2018) Russia space programs and exploration handbook, vol 1. International Business Publications, Inc., Washington, p 304

    Google Scholar 

  • Otsubo T, Sherwood RA, Appleby GM, Neubert R (2015) Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES. J Geod 89:303–312

    Article  Google Scholar 

  • Rozas D, Law C, Swartzlander G (1997) Propagation dynamics of optical vortices. J Opt Soc Am B 14(11):3054–3065

    Article  Google Scholar 

  • Sadovnikov MA, Sokolov AL (2009) Spatial polarization structure of radiation formed by a retroreflector with nonmetalized faces. Opt Spectrosc 107(2):201–206

    Article  Google Scholar 

  • Sokolov AL (2013) Formation of polarization-symmetrical beams using cube-corner reflectors. J Opt Soc Am A 30(7):1350–1357

    Article  Google Scholar 

  • Sokolov AL (2017) Optical vortices with axisymmetric polarization structure. Opt Eng 56(1):014109-1–014109-8

    Article  Google Scholar 

  • Sokolov AL, Murashkin VV (2011) Diffraction polarization-optical elements with the radial symmetry. Opt Spectrosc 111(6):900–907

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Akentyev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, A.L., Akentyev, A.S., Vasiliev, V.P. et al. Version of a glass retroreflector satellite with a submillimeter “target error”. J Geod 93, 2429–2435 (2019). https://doi.org/10.1007/s00190-019-01260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01260-y

Keywords

Navigation