The next generation of satellite laser ranging systems

Abstract

Satellite laser ranging (SLR) stations in the International Laser Ranging Service (ILRS) global tracking network come in different shapes and sizes and were built by different institutions at different times using different technologies. In addition, those stations that have upgraded their systems and equipment are often operating a complementary mix of old and new. Such variety reduces the risk of systematic errors across all ILRS stations, and an operational advantage at one station can inform the direction and choices at another station. This paper describes the evolution of the ILRS network and the emergence of a new generation of SLR station, operating at kHz repetition rates, firing ultra-short laser pulses that are timestamped by epoch timers accurate to a few picoseconds. It discusses current trends, such as increased automation, higher repetition rate SLR and the challenges of eliminating systematic biases, and highlights possibilities in new technology. In addition to meeting the growing demand for laser tracking support from an increasing number of SLR targets, including a variety of Global Navigation Satellite Systems satellites, ILRS stations are striving to: meet the millimetre range accuracy science goals of the Global Geodetic Observing System; make laser range measurements to space debris objects in the absence of high optical cross-sectional retro-reflectors; further advances in deep space laser ranging and laser communications; and demonstrate accurate laser time transfer between continents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Abshire JB, Gardner CS (1985) Atmospheric refractivity corrections in satellite laser ranging. IEEE Trans Geosci Remote Sens 23(4):414–425. https://doi.org/10.1109/tgrs.1985.289431

    Article  Google Scholar 

  2. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121(8):6109–6131. https://doi.org/10.1002/2016JB013098

    Article  Google Scholar 

  3. Appleby G, Rodríguez J, Altamimi Z (2016) Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014. J Geod 90(12):1371–1388. https://doi.org/10.1007/s00190-016-0929-2

    Article  Google Scholar 

  4. Arnold D, Meindl M, Beutler G et al (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geod 89(8):775–791. https://doi.org/10.1007/s00190-015-0814-4

    Article  Google Scholar 

  5. Baryshnikov M, Sadovnikov M, Chubykin A, Shargorodskiy V (2015) Time scales collation and transfer with sub-nanosecond accuracy using laser ranging and pseudoranging measurements. In: Proceedings of the ILRS technical workshop, Matera

  6. Boroson DM, Robinson BS (2015) The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions. In: Elphic R, Russell C (eds) The lunar atmosphere and dust environment explorer mission (LADEE). Springer, Cham, pp 115–128. https://doi.org/10.1007/978-3-319-18717-4_6

    Google Scholar 

  7. Choi E-J, Bang S-C, Sung K-P et al (2015) Design and development of high-repetition-rate satellite laser ranging system. J Astron Space Sci 32(3):209–219. https://doi.org/10.5140/JASS.2015.32.3.209

    Article  Google Scholar 

  8. Couhert A, Cerri L, Legeais J-F et al (2015) Towards the 1 mm/y stability of the radial orbit error at regional scales. Adv Space Res 55(1):2–23. https://doi.org/10.1016/j.asr.2014.06.041

    Article  Google Scholar 

  9. Courde C, Torre JM, Samain E et al (2017) Lunar laser ranging in infrared at the Grasse laser station. Astron Astrophys 602:A90. https://doi.org/10.1051/0004-6361/201628590

    Article  Google Scholar 

  10. Degnan JJ (1985) Satellite laser ranging: current status and future prospects. IEEE Trans Geosci Remote Sens 23(4):398–413

    Article  Google Scholar 

  11. Degnan JJ (1993) Millimeter accuracy satellite laser ranging: a review. Contrib Space Geod Geodyn Technol 25:133–162. https://doi.org/10.1029/GD025p0133

    Article  Google Scholar 

  12. Degnan JJ (1994a) Thirty years of satellite laser ranging. In: Proceedings of the 9th international workshop on laser ranging, Canberra, Australia

  13. Degnan JJ (1994b) SLR 2000: an automated, eyesafe satellite ranging station for the future. In: Proceedings of the 9th international workshop on laser ranging. Australian Government Publishing Service, p. 312

  14. Degnan JJ (2002) Asynchronous laser transponders for precise interplanetary ranging and time transfer. Geodynamics 34(3–4):551–594. https://doi.org/10.1016/S0264-3707(02)00044-3

    Article  Google Scholar 

  15. Degnan JJ (2006) Simulating interplanetary transponder and laser communications experiments via dual station ranging to SLR satellites. In: Proceedings 15th international workshop on laser ranging, Canberra, Australia

  16. Degnan JJ (2007) Asynchronous laser transponders: a new tool for improved fundamental physics experiments. Int J Mod Phys D 16(12a):2137–2150. https://doi.org/10.1142/S0218271807011310

    Article  Google Scholar 

  17. Degnan JJ (2014) A celebration of fifty years of satellite laser ranging. In: Presentation at the 19th international laser ranging workshop, Annapolis, USA

  18. Degnan JJ (2017) Challenges to achieving millimeter accuracy normal points in conventional multiphoton and kHz single photon systems. In: Presentation at the ILRS technical workshop, Riga, Latvia

  19. Dirkx D, Noomen R, Prochazka I, Bauer S, Vermeersen LLA (2014) Influence of atmospheric turbulence on planetary transceiver laser ranging. Adv Space Res 54(11):2349–2370. https://doi.org/10.1016/j.asr.2014.08.022

    Article  Google Scholar 

  20. Dunn PJ, Torrence M, Smith DE, Kolenkiewicz R (1979) Base line estimation using single passes of laser data. J Geophys Res 84(B8):3917–3920. https://doi.org/10.1029/JB084iB08p03917

    Article  Google Scholar 

  21. Einstein A (1905) Zur Elektrodynamik bewegter Körper. Ann Phys 215:891–921

    Article  Google Scholar 

  22. Exertier P, Samain E, Martin N, Courde C et al (2014) Time transfer by laser link: data analysis and validation to the ps level. Adv Space Res 54(11):2371–2385. https://doi.org/10.1016/j.asr.2014.08.015

    Article  Google Scholar 

  23. Exertier P, Belli A, Lemoine JM (2017) Time biases in laser ranging observations: a concerning issue of space geodesy. Adv Space Res 60(5):948–968. https://doi.org/10.1016/j.asr.2017.05.016

    Article  Google Scholar 

  24. Fridelance P, Veillet C (1995) Operation and data analysis in the LASSO experiment. Metrologia 32:27–33. https://doi.org/10.1088/0026-1394/32/1/003

    Article  Google Scholar 

  25. Fumin Y (2001) Current status and future plans for the Chinese satellite laser ranging network. Surv Geophys 22(5–6):465. https://doi.org/10.1023/A:1015616116822

    Article  Google Scholar 

  26. Gibbs P, Wood R (2000) C-SPAD as a single-photon detector. In: Proceedings of the 12th international workshop on laser ranging, Matera. Italy

  27. Gibbs P, Appleby G, Potter C (2006) A reassessment of laser ranging accuracy at SGF Herstmonceux, UK. In: Proceedings of the 15th ILRS workshop on laser ranging, Canberra, Australia

  28. Gross R, Beutler G, Plag HP (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Plag HP, Pearlman M (eds) Global geodetic observing system. Springer, Berlin. https://doi.org/10.1007/978-3-642-02687-4_7

    Google Scholar 

  29. Haifeng Z, Zhibo W, Si Q et al (2016) The current status and future development of automatics control of laser ranging system at Shanghai SLR station. In: Proceedings of the 20th international workshop on laser ranging, Potsdam, Germany

  30. Hampf D, Sproll F, Wagner P et al (2016) First successful satellite laser ranging with a fibre-based transmitter. Adv Space Res 58(4):498–504. https://doi.org/10.1016/j.asr.2016.05.020

    Article  Google Scholar 

  31. Hao S, HaiFeng Z, ZhongPing Z et al (2015) Experiment on diffuse reflection laser ranging to space debris and data analysis. Res Astron Astrophys 15(6):909–917. https://doi.org/10.1088/1674-4527/15/6/013

    Article  Google Scholar 

  32. Hao L, Sijing C, Lixing Y et al (2016) Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging. Opt Express 24(4):3535–3542. https://doi.org/10.1364/OE.24.003535

    Article  Google Scholar 

  33. Heß MP, Stringhetti L, Hummelsberger B et al (2011) The ACES mission: system development and test status. Acta Astronaut 69(11):929–938. https://doi.org/10.1016/j.actaastro.2011.07.002

    Article  Google Scholar 

  34. Humbert L, Hasenohr T, Hampf D, Riede W (2017) Design and commissioning of a transportable laser ranging station STAR-C. In: Advanced Maui optical and space surveillance technologies conference, Wailea, Hawaii

  35. Kirchner G, Koidl F (1999) Compensation of SPAD time-walk effects. J Opt A Pure Appl Opt 1:163. https://doi.org/10.1088/1464-4258/1/2/008

    Article  Google Scholar 

  36. Kirchner G, Koidl F (2004) Graz kHz SLR system: design, experiences and results. In: Proceedings of the 14th international laser ranging workshop, San Fernando, Spain

  37. Kirchner G, Koidl F, Ploner M et al (2013a) Multi-static laser ranging to space debris targets: tests and results. In: Proceedings of the 18th international workshop on laser ranging, Fujiyoshida, Japan

  38. Kirchner G, Koidl F, Friederich F et al (2013b) Laser measurements to space debris from Graz SLR station. Adv Space Res 51(1):21–24. https://doi.org/10.1016/j.asr.2012.08.009

    Article  Google Scholar 

  39. Kirchner G, Koidl F, Steindorfer M, Wang P (2015) SP-DART: single-photon detection, alignment and reference tool. In: Proceedings of the ILRS technical workshop, Matera

  40. Kirchner G, Koidl F, Wang P et al (2016) Concept of a modular/multi-laser/multi-purpose SLR station. In: Proceedings of the 20th international workshop on laser ranging, Potsdam, Germany

  41. Kloth A, Steinborn J, Näränen J, Raja-Halli A (2014) Development of a full SLR software stack based on real-time linux and a new version of the potsdam range gate. In: Proceedings of the 19th international workshop on laser ranging, Annapolis, USA

  42. Kodet J, Prochazka I, Koidl F, Kirchner G, Wilkinson M (2009) SPAD active quenching circuit optimized for satellite laser ranging applications. In: Proceedings of the SPIE 7355, photon counting applications, quantum optics, and quantum information transfer and processing II, 73550W https://doi.org/10.1117/12.821633

  43. Kral L, Prochazka I, Hamal K (2005) Optical signal path delay fluctuations caused by atmospheric turbulence. Opt Lett 30(14):1767–1769. https://doi.org/10.1364/OL.30.001767

    Article  Google Scholar 

  44. Kucharski D, Kirchner G, Schillak S et al (2007) Spin determination of LAGEOS-1 from kHz laser observations. Adv Space Res 39(10):1576–1581. https://doi.org/10.1016/j.asr.2007.02.045

    Article  Google Scholar 

  45. Kucharski D, Otsubo T, Kirchner G, Koidl F (2010) Spin axis orientation of Ajisai determined from Graz 2 kHz SLR data. Adv Space Res 46(3):251–256. https://doi.org/10.1016/j.asr.2010.03.029

    Article  Google Scholar 

  46. Kucharski D, Kirchner G, Koidl F (2011) Spin parameters of nanosatellite BLITS determined from Graz 2 kHz SLR data. Adv Space Res 48(2):343–348. https://doi.org/10.1016/j.asr.2011.03.027

    Article  Google Scholar 

  47. Kucharski D, Kirchner G, Lim H-C, Koidl F (2014) Spin parameters of high earth orbiting satellites etalon-1 and etalon-2 determined from kHz satellite laser ranging data. Adv Space Res 54(11):2309–2317. https://doi.org/10.1016/j.asr.2014.07.010

    Article  Google Scholar 

  48. Kunimori H, Toyoshima M, Takayama Y (2012) Overview of optical ground station with 1.5 m diameter. Special edition: OICETS development and in orbit verifications. NICT J 58(1/2):43–52

    Google Scholar 

  49. Lauber P, Ploner M, Prohaska M et al (2015) Trials and limits of automation: experiences from the Zimmerwald well characterized and fully automated SLR-system. In: Proceedings of the 20th international workshop on laser ranging, Potsdam, Germany

  50. Lejba P, Suchodolski T, Michałek P et al (2018) First laser measurements to space debris in Poland. Adv Space Res 61(10):2609–2616. https://doi.org/10.1016/j.asr.2018.02.033

    Article  Google Scholar 

  51. Liao S-K, Cai W-Q, Handsteiner J et al (2018) Satellite-relayed intercontinental quantum network. Phys Rev Lett 120(3):030501. https://doi.org/10.1103/PhysRevLett.120.030501

    Article  Google Scholar 

  52. Mao D, McGarry JF, Mazarico E, Neumann GA et al (2017) The laser ranging experiment of the Lunar Reconnaissance Orbiter: five years of operations and data analysis. Icarus 283:55–69. https://doi.org/10.1016/j.icarus.2016.07.003

    Article  Google Scholar 

  53. Marini JW, Murray CW (1973) Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees. NASA technical memorandum, NASA-TM-X-70555

  54. McGarry JF, Zagwodzki T, Degnan J et al (2004) Early satellite ranging results from SLR2000. In: Proceedings of the 14th international workshop on laser ranging, San Fernando, Spain

  55. McGarry JF, Merkowitz SM, Donovan HL et al (2013) The collocation of NGSLR with MOBLAS-7 and the future of nasa satellite laser ranging. In: Proceedings of the 18th international workshop on laser ranging, Fujiyoshida, Japan

  56. McGarry JF, Hoffman ED, Degnan JJ et al (2018) NASA’s satellite laser ranging systems for the 21st century. J Geod. https://doi.org/10.1007/s00190-018-1191-6

    Article  Google Scholar 

  57. Moore CJ (2006) A comparison of performance statistics for manual and automated operations at Mt Stromlo. In: Proceedings of the 15th international workshop on laser ranging, Canberra, Australia

  58. Murphy T (2013) Lunar laser ranging: the millimeter challenge. Rep Prog Phys 76:076901. https://doi.org/10.1088/0034-4885/76/7/076901

    Article  Google Scholar 

  59. Nicolas J, Pierron F, Samain E et al (2001) Centimeter accuracy for the french transportable laser ranging station (FTLRS) through sub-system controls. Surv Geophys 22(5–6):449–464. https://doi.org/10.1023/A:1015612032752

    Article  Google Scholar 

  60. Noda H, Kunimori H, Mizuno T et al (2017) Laser link experiment with the Hayabusa2 laser altimeter for in-flight alignment measurement Earth. Planets Space 69:2. https://doi.org/10.1186/s40623-016-0589-8

    Article  Google Scholar 

  61. Otsubo T, Appleby GM (2003) System-dependent center-of-mass correction for spherical geodetic satellites. J Geophys Res 108(B4):2201. https://doi.org/10.1029/2002JB002209

    Article  Google Scholar 

  62. Otsubo T, Sherwood RA, Appleby GM et al (2015) Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES. J Geod 89:303. https://doi.org/10.1007/s00190-014-0776-y

    Article  Google Scholar 

  63. Otsubo T, Matsuo K, Aoyama Y, Yamamoto K, Hobiger T, Kubo-oka T, Sekido M (2016) Effective expansion of satellite laser ranging network to improve global geodetic parameters. Earth Planets Space 68:65. https://doi.org/10.1186/s40623-016-0447-8

    Article  Google Scholar 

  64. Otsubo T, Müller H, Pavlis E et al (2018) Rapid response quality control service for the laser ranging tracking network. J Geod. https://doi.org/10.1007/s00190-018-1197-0

    Article  Google Scholar 

  65. Panek P, Prochazka I, Kodet J (2010) Time measurement device with four femtosecond stability. Metrologia 47(5):L13–L16. https://doi.org/10.1088/0026-1394/47/5/L01

    Article  Google Scholar 

  66. Pavlis EC, Pearlman MR, Noll CE, Combrinck L, Bianco G (2017) Report of the international association of geodesy 2015–2017: International Laser Ranging Service (ILRS)

  67. Pearlman M (1984) Laser system characterization. In: Proceedings of the 5th international workshop on laser ranging, Herstmonceux, UK, published by Geodetic Institute, Univ. Bonn, p. 66

  68. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143. https://doi.org/10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  69. Pearson M (2006) EOS software systems for satellite laser ranging and general astronomical observatory applications. In: Proceedings of the 15th international workshop on laser ranging, Canberra, Australia

  70. Plotkin H, Johnson T, Spandin P, Moye J (1965) Reflection of ruby laser radiation from explorer XXII. Proc IEEE 53:301–302

    Article  Google Scholar 

  71. Prochazka I, Kodet J, Blazej J et al (2017) Identification and calibration of one-way delays in satellite laser ranging systems. Adv Space Res 59(10):2466–2472. https://doi.org/10.1016/j.asr.2017.02.027

    Article  Google Scholar 

  72. Riepl S, Müller H, Mähler S, Eckl J, Klügel T, Schreiber U, Schüler T (2018) Operating two SLR systems at the geodetic observatory Wettzell from local survey to space ties. J Geod (this publication)

  73. Ritchie I (2013) Remote control southern hemisphere SSA observatory. In: Proceedings of the 18th international workshop on laser ranging, Fujiyoshida, Japan

  74. Sadovnikov M, Shargorodskiy V (2015a) Methods for coordinate and time data collection in the laser station ‘Tochka’. In: Proceedings of the 20th international workshop on laser ranging, Potsdam, Germany

  75. Sadovnikov M, Shargorodskiy V (2015b) Measurement automation implemented in the laser station ‘Tochka’. In: Proceedings of the 20th international workshop on laser ranging, Potsdam, Germany

  76. Samain E, Vrancken P, Guillemot P, Fridelance P, Exertier P (2014) Time transfer by laser link (T2L2): characterization and calibration of the flight instrument. Metrologia 51(5):503. https://doi.org/10.1088/0026-1394/51/5/503

    Article  Google Scholar 

  77. Samain E, Phung DH, Maurice N et al (2015) First free space optical communication in Europe between SOTA and MeO optical ground station. In: IEEE international conference on space optical systems and applications (ICSOS), New Orleans, LA https://doi.org/10.1109/icsos.2015.7425085

  78. Samain E, Rovera DG, Torre JM et al (2018) Time transfer by laser link (T2L2) in non common view between Europe and China. IEEE Trans Ultrason Ferroelectr Freq Control 99:1. https://doi.org/10.1109/tuffc.2018.2804221

    Article  Google Scholar 

  79. Sang J, Bennett JC, Smith C (2014) Experimental results of debris orbit predictions using sparse tracking data from Mt. Stromlo. Acta Astronaut 102:258–268. https://doi.org/10.1016/j.actaastro.2014.06.012

    Article  Google Scholar 

  80. Schrama E (2018) Precision orbit determination performance for CryoSat-2. Adv Space Res 61(1):235–247. https://doi.org/10.1016/j.asr.2017.11.001

    Article  Google Scholar 

  81. Schreiber KU, Kodet J (2017) The application of coherent local time for optical time transfer and the quantification of systematic errors in satellite laser ranging. Space Sci Rev 214(1):1371. https://doi.org/10.1007/s11214-017-0457-2

    Article  Google Scholar 

  82. Schreiber KU, Hiener M, Holzapfel B et al (2009) Altimetry and transponder ground simulation experiment. Planet Space Sci 57(12):1485–1490. https://doi.org/10.1016/j.pss.2009.07.016

    Article  Google Scholar 

  83. Smith DE, Kolenkiewicz R, Dunn PJ, Torrence MH (1979) The measurement of fault motion by satellite laser ranging. Dev Geotecton 13:59–67. https://doi.org/10.1016/B978-0-444-41783-1.50014-3

    Article  Google Scholar 

  84. Smith DE, Kolenkiewicz R, Robbins JW, Dunn PJ, Torrence MH (1994) Horizontal crustal motion in the central and eastern Mediterranean inferred from satellite laser ranging measurements. Geophys Res Lett 21(18):1979–1982. https://doi.org/10.1029/94GL01612

    Article  Google Scholar 

  85. Smith DE, Zuber MT, Sun X et al (2006) Two-way laser link over interplanetary distance. Science. https://doi.org/10.1126/science.1120091

    Article  Google Scholar 

  86. Snyder G, Hurst S, Grafinger A, Halsey H (1965) Satellite laser ranging experiment. Proc IEEE 53:298–299

    Article  Google Scholar 

  87. Sósnica K, Thaller D, Dach R et al (2015) Satellite laser ranging to GPS and GLONASS. J Geod 89(7):725–743. https://doi.org/10.1007/s00190-015-0810-8

    Article  Google Scholar 

  88. Steindorfer M, Kirchner G, Koidl F, Wanget P (2015) Stare and chase of space debris targets using real-time derived pointing data. In: Proceedings of the 20th international workshop on laser ranging, Potsdam, Germany

  89. Sun X, Skillman DR, Hoffman ED et al (2013) Free space laser communication experiments from Earth to the Lunar Reconnaissance Orbiter in lunar orbit. Opt Express 21(2):1865–1871. https://doi.org/10.1364/OE.21.001865

    Article  Google Scholar 

  90. Takenaka H, Carrasco-Casado A, Fujiwara M et al (2017) Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite. Nat Photonics 11:502–508. https://doi.org/10.1038/nphoton.2017.107

    Article  Google Scholar 

  91. Tangyong G, Peiyuan W, Xin L et al (2015) Progress of the satellite laser ranging system TROS1000. Geod Geodyn 6(1):67–72. https://doi.org/10.1016/j.geog.2014.12.004

    Article  Google Scholar 

  92. Toyoshima M, Takahashi T, Suzuki K et al (2007) Results from phase-1, phase-2 and phase-3 Kirari optical communication demonstration experiments with the NICT optical ground station (KODEN). In: 24th international communications satellite systems, conference of AIAA, AIAA-2007-3228, Korea

  93. Vallone G, Bacco D, Dequal D et al (2015) Experimental satellite quantum communications. Phys Rev Lett 115:040502. https://doi.org/10.1103/PhysRevLett.115.040502

    Article  Google Scholar 

  94. van den Ijssel J, Encarnação J, Doornbos E, Visser P (2015) Precise science orbits for the Swarm satellite constellation. Adv Space Res 56(6):1042–1055. https://doi.org/10.1016/j.asr.2015.06.002

    Article  Google Scholar 

  95. Varghese T (2017) Transitioning the NASA SLR network from the time interval mode to event timing mode with improved data quality and quantity. In: Proceedings of the ILRS technical workshop, Riga. Latvia

  96. Wang P, Kirchner G, Döberl E et al (2016) Tracking up to geostationary satellite with 15 μJ Laser and 70 cm astronomy telescope. In: Proceedings of the 20th international workshop on laser ranging, Potsdam, Germany

  97. Wendong M, Haifeng Z, Peicheng H et al (2013) Design and experiment of onboard laser time transfer in Chinese Beidou navigation satellites. Adv Space Res 51(6):951–958. https://doi.org/10.1016/j.asr.2012.08.007

    Article  Google Scholar 

  98. Wendong M, Zhibo W, Haifeng Z et al (2016) The project and plan of ground-satellite laser time transfer in China. In: Proceedings of the 20th international laser ranging workshop, Potsdam, Germany

  99. Wilkinson M, Appleby G (2011) In-orbit assessment of laser retro-reflector efficiency onboard high orbiting satellites. Adv Space Res 48(3):578–591. https://doi.org/10.1016/j.asr.2011.04.008

    Article  Google Scholar 

  100. Wilkinson M, Appleby G, Sherwood R, Smith V (2013) Monitoring site stability at the space geodesy facility, Herstmonceux, UK. In: Altamimi Z, Collilieux X (eds) reference frames for applications in geosciences. International association of geodesy symposia, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32998-2_16

    Google Scholar 

  101. Xue D, Xingwei H, Qinli S et al (2016) Improvements of Changchun SLR station. In: Proceedings of the 20th international laser ranging workshop, Potsdam, Germany

  102. Zelensky NP, Lemoine FG, Ziebart M et al (2010) DORIS/SLR POD modeling improvements for Jason-1 and Jason-2. Adv Space Res 46(12):1541–1558. https://doi.org/10.1016/j.asr.2010.05.008

    Article  Google Scholar 

  103. Zelensky NP, Lemoine FG, Chinn DS et al (2015) Towards the 1-cm SARAL orbit. Adv Space Res 58(12):2651–2676. https://doi.org/10.1016/j.asr.2015.12.011

    Article  Google Scholar 

  104. Zhibo W, Haifeng Z, Pu L, Juping C, Zhongping Z (2014) Report on satellite laser ranging observations at shanghai observatory in 2013. Ann Shanghai Astron Obs 35:11–20

    Google Scholar 

  105. Zhongping Z, Haifeng Z, Zhibo W et al (2011) kHz repetition satellite laser ranging system with high precision and measuring results. Chin Sci Bull (Chinese Ver) 56:1177–1183

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge all the design, analysis, maintenance, development and operational work undertaken by the great number individuals in the global ILRS community now and over the history of laser ranging. This work ensures the highest quality data and products and the greatest impact from SLR.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew Wilkinson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilkinson, M., Schreiber, U., Procházka, I. et al. The next generation of satellite laser ranging systems. J Geod 93, 2227–2247 (2019). https://doi.org/10.1007/s00190-018-1196-1

Download citation

Keywords

  • Satellite laser ranging
  • Space geodesy
  • ILRS network
  • Next generation
  • Automation
  • Laser transponders