Skip to main content
Log in

A generalized theory of the figure of the Earth: formulae

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Traditionally a laterally homogeneous and spherical base Earth model (e.g., the PREM model) is considered as input when computing the Earth’s equipotential surfaces, which are then resulted to be in symmetric shape. However, the Earth, known with a complex distribution of interior material and density, especially in the upper mantle and the crust, cannot be treated as a symmetric sphere. Recently, a CRUST1.0 model of crust layer is published and well accepted. But the effect caused by the asymmetric crust (and mantle) on equilibrium figures of the Earth cannot be analyzed by the traditional theories. A generalized theory of the figure of the Earth to third-order precision is firstly proposed in this paper, as well as the iterative calculation strategy to solve the complex equation system. In order to validate this generalized theory, the degeneration of this generalized theory with the PREM model is made and is compared with traditional theories, and it is shown that the result of this generalized theory, after degeneration, is consistent very well with traditional theory. Meanwhile, the effect (including both the direct and indirect effects) of the crust layer, from the CRUST1.0 model, on the figures of equipotential surfaces of the Earth’s interior, as well as their effects on the global dynamics flattening, will be presented as an application of this theory in accompanying paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Airy GB (1826) On the figure of the Earth. Philos Trans R Soc Lond 116:548–578

    Article  Google Scholar 

  • Alessandrini B (1989) The hydrostatic equilibrium figure of the Earth: an iterative approach. Phys Earth Planet Inter 54:180–192

    Article  Google Scholar 

  • Callandreau O (1889) Mmoire sur la thorie de la figure des plantes. In Ann de l’Observ de Paris 19:1–52

    Google Scholar 

  • Clairaut AC (1743) Thorie de la figure de la terre, tire des principes de l’hydrostatique. chez David fils, libraire, ruë Saint-Jacques la plume d’or

  • Dahlen F, Tromp J (1998) Theoretical global seismology. Princeton University Press, Princeton

    Google Scholar 

  • Darwin GH (1899) The theory of the figure of the earth carried to the second order of small quantities. MNRAS 60:82–124

    Article  Google Scholar 

  • de Sitter W (1924) On the flattening and the constitution of the Earth (Errata: 2 V). Bull Astron Inst Neth 2:97–108

    Google Scholar 

  • Denis C (1989) The hydrostatic figure of the Earth. In: Tesseyre R (ed) Gravity and low-frequency geodynamic, physics and evolution of the Earth’s interior, vol. 4, Chap. 3. PWN-Polish Scientific Publishers, Warszawa, pp 111–186

  • Denis C, Amalvict M, Rogister Y, Tomecka-Sucho S (1998) Methods for computing internal flattening, with applications to the Earth’s structure and geodynamics. Geophys J Int 132:603–642

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Int 25:297–356

    Article  Google Scholar 

  • Huang CL, Liao XH (2003) Comment on ‘Representation of the elasticgravitational excitation of a spherical Earth model by generalized spherical harmonics’ by Phinney and Burridge. Geophys J Int 155:669–678

    Article  Google Scholar 

  • Jeffreys H (1953) The figures of rotating planets. MNRAS 113:97–105

    Article  Google Scholar 

  • Kopal Z (1960) Figures of equilibrium of celestial bodies. University of Wisconsin Press, Madison

    Google Scholar 

  • Kopal Z (1973) On secular stability of rapidly rotating stars of arbitrary structure. Astrophys Space Sci 24:145–174

    Article  Google Scholar 

  • Kopal Z, Lanzano P (1974) Third-order clairaut equation for a rotating body of arbitrary density and its application to Marine Geodesy (No. NRL-7801). Naval Research LAB, Washington

  • Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1.0—a 1-degree global model of Earth’s crust. Geophys Res Abstr 15:2658

    Google Scholar 

  • Liapounoff A (1904) Sur l’quation de Clairaut et les quations plus gnrales de la thorie de la figure des plantes. Mem de l’Acad des Sci de Petersb 15:1–66

    Google Scholar 

  • Lichtenstein L (1933) Gleichgewichtsfiguren rotierender flssigkeiten. Springer, Berlin

    Book  Google Scholar 

  • Liu Y (2008) The study of the gravity potential theory of the Earth interior and the global dynamic flattening. Ph.D. Dissertation, Shanghai Astronomical Observatory (in Chinese)

  • Liu CJ, Huang CL, Liu Y, Zhang M (2018) A generalized theory of the figure of the Earth: on the global dynamical flattening. J Geod (this issue)

  • Moritz H (1990) The figure of the Earth: theoretical geodesy and the Earth’s interior. Wichmann, Karlsruhe

    Google Scholar 

  • Mound JE, Mitrovica JX, Forte AM (2003) The equilibrium form of a rotating Earth with an elastic shell. Geophys J Int 152:237–241

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS conventions (2010) (No. IERS-TN-36). Bureau International Des Poids et Mesures Severs (France)

  • Phinney RA, Burridge R (1973) Representation of the elasticgravitational excitation of a spherical earth model by generalized spherical harmonics. Geophys J Int 34:451–487

    Article  Google Scholar 

  • Radau R (1885) Memoires et observations Remarques sur la thorie de la figure de la terre. Bull Astron 2:157–161

    Google Scholar 

  • Wavre R (1932) Figures plantaires et Godsie. Gauthier-Villars, Paris

    Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (11773058/ 11373058). Three anonymous reviewers are appreciated for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengli Huang, Yu Liu or Chengjun Liu.

Appendices

Appendix A: Derivation of \({r}^{k}\)

The expression of \(r^k\) can be obtained from Eq. (7):

$$\begin{aligned} r^k = s^k \left[ 1+ \sum _{j=1}^{k} C_k^j \left( \sum _{n=0}^{\infty } \sum _{m=-n}^{n} H_n^m Y_n^m\right) ^j\right] \end{aligned}$$
(A.1)

where \(C_k^j\) is the binomial coefficients.

To simplify the derivation, we define the \(Y_{n,m}^N\) as a generalized spherical harmonic function (Phinney and Burridge 1973; Huang and Liao 2003). However, we only need to use the function of \(Y_{n,m}^0\) (i.e., \(Y_n^m\)) in this paper.

$$\begin{aligned} Y_{n,m}^N (\theta ,\lambda ) = P_{n,m}^N (\cos \theta ) \mathrm{e}^{i m \lambda } \end{aligned}$$
(A.2)

where

$$\begin{aligned} \begin{aligned} P_{n,m}^N (x)&= \frac{(-1)^{n-N}}{2^n (n-N)!} \left[ \frac{(n-N)! (n+m)!}{(n+N)! (n-m)!}\right] ^{\frac{1}{2}} \\ {}&\quad \cdot (1-x)^{-\frac{1}{2} (m-N)} (1+x)^{-\frac{1}{2} (m+N)} \\ {}&\quad \cdot \left( \frac{\mathrm {d}}{\mathrm {d} x}\right) ^{n-m} [(1-x)^{n-N} (1+x)^{n+N}] \end{aligned} \end{aligned}$$
(A.3)

Then we have

$$\begin{aligned}&Y_{l_1,m_1}^{N_1} Y_{l_2,m_2}^{N_2} \nonumber \\&\quad = \sum _{l=0}^{\infty } \sum _{m=-l}^{l} {\mathrm{func}} (l,m,N,l_1,m_1,N_1,l_2,m_2,N_2) Y_{l,m}^N\nonumber \\ \end{aligned}$$
(A.4)

where \(N = N_1 + N_2\), and

$$\begin{aligned}&\mathrm{func} (l,m,N,l_1,m_1,N_1,l_2,m_2,N_2) \nonumber \\&\quad = (-1)^{N+m} \left[ \frac{(2l+1)(2l_1+1)(2l_2+1)}{4 \pi }\right] ^{1/2}\nonumber \\&\qquad \times \begin{pmatrix} l &{} l_1 &{} l_2 \\ -N &{} N_1 &{} N_2 \end{pmatrix} \begin{pmatrix} l &{} l_1 &{} l_2 \\ -m &{} m_1 &{} m_2 \end{pmatrix} \end{aligned}$$
(A.5)

both \(\begin{pmatrix} l &{} l_1 &{} l_2 \\ -N &{} N_1 &{} N_2 \end{pmatrix}\) and \(\begin{pmatrix} l &{} l_1 &{} l_2 \\ -m &{} m_1 &{} m_2 \end{pmatrix}\) are Wigner-3j symbol, their definition is:

$$\begin{aligned} \begin{aligned}&\begin{pmatrix} l &{} l_1 &{} l_2 \\ -m &{} m_1 &{} m_2 \end{pmatrix} \\&\quad = (-1)^{l_1+l_2+m} \times \frac{\sqrt{(l+l_1-l_2)!(l-l_1+l_2)!(-l+l_1+l_2)!}}{\sqrt{(l+l_1+l_2+1)!}}\\&\qquad \times \sqrt{(l+m)!(l-m)!(l_1+m_1)!(l_1-m_1)!(l_2+m_2)!(l_2-m_2)!} \\&\qquad \times \sum _k \frac{(-1)^k}{D_k} \end{aligned} \end{aligned}$$
(A.6)

where

$$\begin{aligned} \begin{aligned} D_k&= k!(l_1-m_1-k)!(l_2+m_2-k)! \\&\quad (-l+l_1+l_2-k)!(l-l_1-m_2+k)!(l-l_2+m_1+k)! \end{aligned} \end{aligned}$$

Combining Eqs. (A.1A.6), the expression of \(r^k\) can be simplified as follow:

$$\begin{aligned} r^k = s^k \sum _{n=0}^{\infty } \sum _{m=-n}^{n} L_{k,n,m} (s) Y_n^m (\theta , \lambda ), \quad k \ne 0 \end{aligned}$$
(A.7)

where \(L_{k,n,m} (s)\) is function of \(H_n^m (s)\).

Similarly, the Taylor expansion of \(\ln r\) is:

$$\begin{aligned} \ln r = \ln s + \sum _{j=1}^{\infty } (-1)^{j+1}j^{-1} \left( \sum _{n=0}^{\infty }\sum _{m=-n}^{n} H_{n}^{m} Y_{n}^{m}\right) ^{j} \end{aligned}$$
(A.8)

Substituting Eq. (A.4) into above Eq. (A.8), one can get

$$\begin{aligned} \ln r= & {} \sum _{n=0}^{\infty } \sum _{m=-n}^{n} L_{0,n,m}(s) Y_{n}^{m}(\theta ,\lambda ) . \end{aligned}$$
(A.9)

Here two short terms (\(L_{3,0,0}\) and \(L_{2,2,0}\)) in Eq. (A.7) and one short term (\(L_{0,5,5}\)) in Eq. (A.9) are listed for reference and check.

$$\begin{aligned} L_{3,0,0} (s) = k_1 (H_0^0)^3 + k_2 (H_0^0)^2 +k_3 H_0^0 + k_4 + 2 \sqrt{\pi }\nonumber \\ \end{aligned}$$
(A.10)

where \(k_1, k_2, k_3\) and \(k_4\) are given in “Appendix B”.

$$\begin{aligned} L_{2,2,0} (s)= & {} \frac{\sqrt{15} H_2^{-2} H_4^2}{7 \sqrt{\pi }} - \frac{\sqrt{30} H_2^{-1} H_4^1 }{7 \sqrt{\pi }} -\frac{6 H_2^0 H_4^0}{7 \sqrt{\pi }} \nonumber \\&- \frac{\sqrt{30} H_2^1 H_4^{-1}}{7 \sqrt{\pi }} + \frac{\sqrt{15} H_2^2 H_4^{-2}}{7 \sqrt{\pi }} + \frac{\sqrt{5} H_3^{-3} H_3^{3}}{3 \sqrt{\pi }} \nonumber \\&- \frac{\sqrt{5} H_3^{-1} H_3^1}{5 \sqrt{\pi }} - \frac{3 \sqrt{6} H_1^{-1} H_3^1}{\sqrt{105 \pi }} + \frac{2 \sqrt{5} (H_3^{0})^2}{15 \sqrt{\pi }} \nonumber \\&+ \frac{9 H_1^{0} H_3^0}{\sqrt{105 \pi }} - \frac{3 \sqrt{6} H_1^{1} H_3^{-1}}{\sqrt{105 \pi }} - \frac{2 \sqrt{5} H_2^{-2} H_2^2}{7 \sqrt{\pi }} \nonumber \\&- \frac{\sqrt{5} H_2^{-1} H_2^1}{\sqrt{7 \pi }} + \frac{\sqrt{5} (H_2^{0})^2}{7 \sqrt{\pi }} + \frac{H_0^{0} H_2^0}{\sqrt{\pi }} \nonumber \\&+ 2 H_2^{0} + \frac{\sqrt{5} H_1^{-1} H_1^1}{\sqrt{5 \pi }} + \frac{\sqrt{5} (H_1^{0})^2}{5 \sqrt{\pi }} \end{aligned}$$
(A.11)
$$\begin{aligned} L_{0,5,5} (s)= & {} \frac{(H_0^0)^2 H_5^5}{4 \pi } -\frac{H_0^0 H_5^5}{2 \sqrt{\pi }} + H_5^5 + \frac{\sqrt{5}\sqrt{33} H_0^0 H_1^1 H_4^4}{22 \pi } \nonumber \\&- \frac{\sqrt{5}\sqrt{33} H_1^1 H_4^4}{22 \sqrt{\pi }} + \frac{\sqrt{210} \sqrt{385} H_0^0 H_2^2 H_3^3}{462 \pi }\nonumber \\&- \frac{\sqrt{210} \sqrt{385} H_2^2 H_3^3}{462 \sqrt{\pi }} +\frac{\sqrt{5} \sqrt{21} \sqrt{33} (H_1^1)^2 H_3^3}{66 \sqrt{7 } \pi } \nonumber \\&+ \frac{5 \sqrt{5} \sqrt{33} H_1^1 (H_2^2)^2}{22 \sqrt{70} \pi } \end{aligned}$$
(A.12)

Appendix B: The coefficients of \(k_1, k_2, k_3\) and \(k_4\) in Eq. (A.10)

$$\begin{aligned} k_1= & {} \frac{1}{4 \pi } \end{aligned}$$
(B.1)
$$\begin{aligned} k_2= & {} \frac{3}{2 \sqrt{\pi }} \end{aligned}$$
(B.2)
$$\begin{aligned} k_3= & {} - \frac{3 H_{3}^{-3} H_{3}^{3}}{2 \pi } + \frac{3 H_{3}^{-2} H_{3}^{2}}{2 \pi } - \frac{3 H_{3}^{-1} H_{3}^{1}}{2 \pi } + \frac{3 (H_{3}^{0})^{2}}{2 \pi }+ \frac{3 H_{2}^{-2} H_{2}^{2}}{2 \pi } \nonumber \\&- \frac{3 H_{2}^{-1} H_{2}^{1}}{2 \pi }+ \frac{3 (H_{2}^{0})^{2} }{4 \pi }- \frac{3 H_{1}^{-1} H_{1}^{1} }{2 \pi }+ \frac{3 (H_{1}^{0})^{2}}{4 \pi } + 3 \end{aligned}$$
(B.3)
$$\begin{aligned} k_4= & {} -\frac{3 H_{3}^{-3} H_{3}^{3}}{\sqrt{\pi }} - \frac{9 \sqrt{15} H_{1}^{-1} H_{2}^{-2} H_{3}^{3}}{2 \sqrt{105} \pi } + \frac{3 H_{3}^{-2} H_{3}^{2}}{\sqrt{\pi }} \nonumber \\&+ \frac{9 \sqrt{10} H_{1}^{-1} H_{2}^{-1} H_{3}^{2}}{2 \sqrt{105} \pi }+ \frac{9 \sqrt{5} H_{1}^{0} H_{2}^{-2} H_{3}^{2}}{2 \sqrt{105} \pi } -\frac{3 H_{3}^{-1} H_{3}^{1}}{ \sqrt{\pi } } \nonumber \\&- \frac{9 \sqrt{6} H_{1}^{-1} H_{2}^{0} H_{3}^{1}}{2 \sqrt{105} \pi } -\frac{9 \sqrt{2} H_{1}^{0} H_{2}^{-1} H_{3}^{1}}{\sqrt{105} \pi }-\frac{9 H_{1}^{1} H_{2}^{-2} H_{3}^{1}}{2 \sqrt{105} \pi }\nonumber \\&+\frac{3 (H_{3}^{0})^{2}}{2 \sqrt{\pi }} +\frac{9 \sqrt{3} H_{1}^{-1} H_{2}^{1} H_{3}^{0}}{2 \sqrt{105} \pi } +\frac{27 H_{1}^{0} H_{2}^{0} H_{3}^{0}}{2 \sqrt{105} \pi } \nonumber \\&+\frac{9 \sqrt{3} H_{1}^{1} H_{2}^{-1} H_{3}^{0}}{2 \sqrt{105} \pi } -\frac{9 H_{1}^{-1} H_{2}^{2} H_{3}^{-1}}{2 \sqrt{105} \pi } -\frac{9 \sqrt{2} H_{1}^{0} H_{2}^{1} H_{3}^{-1}}{\sqrt{105} \pi } \nonumber \\&-\frac{9 \sqrt{6} H_{1}^{1} H_{2}^{0} H_{3}^{-1}}{2 \sqrt{105} \pi } +\frac{9 \sqrt{5} H_{1}^{0} H_{2}^{2} H_{3}^{-2}}{2 \sqrt{105} \pi } +\frac{9 \sqrt{10} H_{1}^{1} H_{2}^{1} H_{3}^{-2}}{2 \sqrt{105} \pi } \nonumber \\&-\frac{9 \sqrt{15} H_{1}^{1} H_{2}^{2} H_{3}^{-3}}{2 \sqrt{105} \pi } -\frac{3 \sqrt{5} H_{2}^{-2} H_{2}^{0} H_{2}^{2}}{7 \pi } +\frac{3 \sqrt{5} \sqrt{6} (H_{2}^{-1})^{2} H_{2}^{2}}{28 \pi }\nonumber \\&+\frac{3 H_{2}^{-2} H_{2}^{2}}{\sqrt{\pi } } +\frac{3 \sqrt{5} \sqrt{6} (H_{1}^{-1})^{2} H_{2}^{2}}{20 \pi } +\frac{3 \sqrt{5} \sqrt{6} H_{2}^{-2} (H_{2}^{1})^{2}}{28 \pi }\nonumber \\&-\frac{3 \sqrt{5} H_{2}^{-1} H_{2}^{0} H_{2}^{1}}{14 \pi } -\frac{3 H_{2}^{-1} H_{2}^{1}}{\sqrt{\pi } }-\frac{3 \sqrt{3} \sqrt{5} H_{1}^{-1} H_{1}^{0} H_{2}^{1}}{10 \pi } \nonumber \\&+\frac{\sqrt{5} (H_{2}^{0})^{3}}{14 \pi } +\frac{3 (H_{2}^{0})^{2}}{2 \sqrt{\pi } } +\frac{3 \sqrt{5} H_{1}^{-1} H_{1}^{1} H_{2}^{0}}{10 \pi } +\frac{3 \sqrt{5} (H_{1}^{0})^{2} H_{2}^{0}}{10 \pi } \nonumber \\&-\frac{3 \sqrt{3} \sqrt{5} H_{1}^{0} H_{1}^{1} H_{2}^{-1}}{10 \pi } +\frac{3 \sqrt{5} \sqrt{6} (H_{1}^{1})^{2} H_{2}^{-2}}{20 \pi } -\frac{3 H_{1}^{-1} H_{1}^{1}}{\sqrt{\pi }} \nonumber \\&+\frac{3 (H_{1}^{0})^{2}}{2 \sqrt{\pi } } \end{aligned}$$
(B.4)

Appendix C: The derivation of \(A _n^m\) and \(B _n^m\)

Let x = \(s /s _0\), y = \(s '/s _0\), where \(s _0\) is the mean equi-volumetric radii of the equipotential surface crossing the point on uppermost boundary, so \(s _0\) is 6371 km in Sect. 3.1 and 6296 km in Sect. 3.2. Dividing the Earth into L layers with the lowest and uppermost boundary (\(x _1\) = 0, \(x _{L+1}\) = 1) and \(x \)\(\in \) [\(x _k\), \(x _{k+1}\)], we can get the integral of \(A _n^m\) and \(B _n^m\):

$$\begin{aligned} A_{n}^{m}&= x^{-n-3} \int _{0}^{x} \frac{\mathrm{d} [y^{n+3}L_{n+3,n,m}]}{\mathrm{d} y} \cdot \delta \mathrm{d} y\nonumber \\&= x^{-n-3} \left[ \int _{x_k}^{x} \frac{\mathrm{d} y^{n+3} L_{n+3,n,m}}{\mathrm{d} y}\delta _{k}(y)\mathrm{d} y \right. \nonumber \\&\left. + \sum _{i=1}^{k-1} \int _{x_i}^{x_{i+1}}\frac{\mathrm{d} y^{n+3} L_{n+3,n,m}}{\mathrm{d} y}\delta _{i}(y) \mathrm{d} y\right] \nonumber \\&= x^{-n-3} \left[ y^{n+3} L_{n+3,n,m} \delta _{k}(y) |_{x_k}^{x} \right. - \int _{x_k}^{x} y^{n+3} L_{n+3,n,m}\frac{\mathrm{d} \delta _{k}(y)}{\mathrm{d} y}\mathrm{d} y\nonumber \\&\left. \quad + \sum _{i=1}^{k-1} y^{n+3} L_{n+3,n,m} \delta _{i}(y) |_{x_i}^{x_{i+1}}\right. \nonumber \\&\left. - \sum _{i=1}^{k-1} \int _{x_i}^{x_{i+1}} y^{n+3} L_{n+3,n,m}\frac{\mathrm{d} \delta _{i}(y)}{\mathrm{d} y}\mathrm{d} y\right] \nonumber \\&= - x^{-n-3} \int _{x_k}^{x} y^{n+3} L_{n+3,n,m}\frac{\mathrm{d} \delta _{k}(y)}{\mathrm{d} y}\mathrm{d} y - x^{-n-3} \sum _{i=1}^{k-1} \int _{x_i}^{x_{i+1}} y^{n+3} \nonumber \\&\quad \cdot L_{n+3,n,m}\frac{\mathrm{d} \delta _{i}(y)}{\mathrm{d} y}\mathrm{d} y + L_{n+3,n,m}(x) \delta _{k}(x) + x^{-n-3}\sum _{i=1}^{k-1} [ \delta _{i}(x_{i+1}) \nonumber \\&\quad -\, \delta _{i+1}(x_{i+1})]L_{n+3,n,m} (x_{i+1})x_{i+1}^{n+3} \end{aligned}$$
(C.1)
$$\begin{aligned} B_{n}^{m}&{\mathop {=}\limits ^{n\ne 2}} x^{n-2} \int _{x}^{1} \frac{\mathrm{d} [ y^{2-n}L_{2-n,n,m}]}{\mathrm{d} y} \cdot \delta y\nonumber \\&= x^{n-2} \left[ \int _{x}^{x_{k+1}} \frac{\mathrm{d} y^{2-n} L_{2-n,n,m}}{\mathrm{d} y}\delta _{k}(y) \mathrm{d} y \right. \nonumber \\&\left. \quad +\, \sum _{i=k+1}^{L} \int _{x_i}^{x_{i+1}}\frac{\mathrm{d} y^{2-n} L_{2-n,n,m}}{\mathrm{d} y}\delta _{i}(y) \mathrm{d} y\right] \nonumber \\&= x^{n-2} \left[ y^{2-n} L_{2-n,n,m} \delta _{k}(y) |_{x}^{x_{k+1}} \right. \left. - \int _{x}^{x_{k+1}} y^{2-n} L_{2-n,n,m}\frac{\mathrm{d} \delta _{k}(y)}{\mathrm{d} y} \mathrm{d} y \right. \nonumber \\&\left. \quad +\, \sum _{i=k+1}^{L} y^{2-n} L_{2-n,n,m} \delta _{i}(y)|_{x_i}^{x_{i+1}} \right. \nonumber \\&\quad \left. - \sum _{i=k+1}^{L} \int _{x_i}^{x_{i+1}} y^{2-n} L_{2-n,n,m}\frac{\mathrm{d} \delta _{i}(y)}{\mathrm{d} y} \mathrm{d} y\right] \nonumber \\&= -L_{2-n,n,m}(x) \delta _{k}(x) + x^{n-2} L_{2-n,n,m}(1)\delta _{L}(1) - x^{n-2} \int _{x}^{x_{k+1}} y^{2-n} \nonumber \\&\quad \cdot L_{2-n,n,m} \frac{\mathrm{d} \delta _{k}(y)}{\mathrm{d} y} \mathrm{d} y + x^{n-2}\sum _{i=k+1}^{L} [ \delta _{i-1}(x_{i}) - \delta _{i}(x_{i}) L_{2-n,n,m}(x_i)x_i^{2-n} \nonumber \\&\quad -\, x^{n-2} \sum _{i=k+1}^{L} \int _{x_i}^{x_{i+1}} y^{2-n} L_{2-n,n,m} \frac{\mathrm{d} \delta _{i}(y)}{\mathrm{d} y} \mathrm{d} y \end{aligned}$$
(C.2)
$$\begin{aligned} B_{n}^{m}&{\mathop {=}\limits ^{n = 2}} \int _{x}^{1} \frac{\mathrm{d} L_{0,2,m}}{\mathrm{d} y} \cdot \delta \mathrm{d} y\nonumber \\&= \sum _{i=k+1}^{L} \int _{x_i}^{x_{i+1}} \frac{\mathrm{d} L_{0,2,m}}{\mathrm{d} y} \cdot \delta _i (y) \mathrm{d} y\nonumber \\&= \sum _{i=k+1}^{L} L_{0,2,m} \delta _i (y) |_{x_i}^{x_{i+1}} - \sum _{i=k+1}^{L} \int _{x_i}^{x_{i+1}} L_{0,2,m} \frac{\mathrm{d} \delta _i (y)}{\mathrm{d} y} \mathrm{d} y \end{aligned}$$
(C.3)

where \(\delta _i = \rho _i / \overline{\rho }, \rho _i\) is the density of the i-th layer and \(\overline{\rho }\) is the mean density of the whole Earth for case (1) in Sect. 3.1, or the mean density of the dominant part of the Earth surrounded by the equipotential surface of equi-volume radii \(s = 6296\) km for case (2) in Sect. 3.2.

Appendix D: The values of \(C_n^m\) (n = 0, ..., 6; m = \(-n\), ..., n)

The terms \(C_n^m\) in Eq. (37) correspond to the gravitational contribution of the mass of crust layer (the depth up to 75 km, or \(s_2\)\(\in \) [6296, 6371] km) in the CRUST1.0 model in this work. As the density distribution is given by an a prior (CRUST1.0 model here) and will not change with the variation of the equi- potential (or equi-density) surfaces interior, except that the bottom of the deepest 9th layer, i.e., the top of the inner dominant Earth; therefore, \(C_n^m\) can be approximately regarded as constant for a given location. \(C_n^m\) can thus be calculated at beginning for subsequent usage, by discrete integration with CRUST1.0, and do not need to take part in the iterations. Moreover, this table values are the final results after the uppermost equipotential surface \((S_{L+1})\) changes. All the 49 values of \(C_n^m\) are normalized and listed in following.

The recording order is: \(C_0^0, C_1^{-1}, C_1^0, C_1^1, C_2^{-2}, C_2^{-1}, C_2^0\), \(C_2^1\), \(C_2^2\), \(C_3^{-3}\), \(\ldots \), \(C_6^5\), \(C_6^6\) in the next lines with the real and imaginary parts of \(C_n^m\) in the same bracket.

figure a

Appendix E: On the ellipticity (f)

If a symmetric Earth model like PREM is used as a starting Earth model, the equipotential surfaces are obtained to be rotational symmetry and equatorial symmetry with this generalized theory, which means that there are only coefficients \(H_0^0\), \(H_2^0\), \(H_4^0\) and \(H_6^0\) kept in Eq. (7). Then one can define an effective ellipticity (f) of this figure (\(\mathbf{S_i} (s_i)\)):

$$\begin{aligned} f(s_i)=\frac{a(s_i)-c(s_i)}{a(s_i)} \end{aligned}$$
(E.1)

where \(a(s_i)\) and \(c(s_i)\) are the equatorial radii and polar radii of the Earth.

$$\begin{aligned} a(s_i)= & {} r (s_i, \frac{\pi }{2}, 0) \nonumber \\ {}= & {} s_i[1+ H_0^0(s_i)Y_0^0(\frac{\pi }{2}, 0) + H_2^0(s_i)Y_2^0(\frac{\pi }{2}, 0) \nonumber \\ {}&+ H_4^0(s_i)Y_4^0(\frac{\pi }{2}, 0) + H_6^0(s_i)Y_6^0(\frac{\pi }{2}, 0)]\end{aligned}$$
(E.2)
$$\begin{aligned} c(s_i)= & {} r (s_i, 0, 0) \nonumber \\ {}= & {} s_i[1+ H_0^0(s_i)Y_0^0(0, 0) + H_2^0(s_i)Y_2^0(0, 0) \nonumber \\ {}&+ H_4^0(s_i)Y_4^0(0, 0) + H_6^0(s_i)Y_6^0(0, 0)] \end{aligned}$$
(E.3)

Appendix F: Some terms of \(p_{n,m}, f_{k,n,m}, g_{k,n,m}, u_{k,n,m}\) and \(DH_n^m\)

In this appendix, we list some terms (e.g., \(p_{n,m}\), \(L_{k,n,m}\), \(f_{k,n,m}\), \(g_{k,n,m}\) and \(u_{k,n,m}\)) with \(n = 2\) and \(m = 0\) for reader’s reference and check:

$$\begin{aligned} p_{2,0} (s)= & {} - \frac{2 L_{2, 4, 0}}{7 \sqrt{5}} + \frac{5 L_{2,2,0}}{21} - \frac{L_{2,0,0}}{3 \sqrt{5}} \end{aligned}$$
(F.1)
$$\begin{aligned} f_{1,2,0}(s)= & {} -{{\sqrt{6}\sqrt{\pi }L_{-2 , 3 , -1} A_1^1} \over {2\sqrt{105}}}+{{ \sqrt{\pi }L_{-2 , 1 , -1} A_1^1}\over {6\sqrt{5}}} \nonumber \\&+{{3\sqrt{\pi }L_{-2 , 3 , 0} A_1^0} \over {2\sqrt{105}}}+{{ \sqrt{\pi }L_{-2 , 1 , 0} A_1^0}\over {3\sqrt{5}}}\nonumber \\&-{{\sqrt{6}\sqrt{\pi }L_{ -2 , 3 , 1} A_1^{-1}}\over {2\sqrt{105} }}+{{\sqrt{\pi }L_{-2 , 1 , 1} A_1^{-1} }\over {6\sqrt{5}}} \end{aligned}$$
(F.2)
$$\begin{aligned} f_{3,2,0}(s)= & {} {{\sqrt{5}\sqrt{\pi }L_{-4 , 3 , -3 } A_3^3}\over {63}}-{{\sqrt{\pi } L_{-4 , 3 , -1} A_3^1 }\over {21\sqrt{5}}} \nonumber \\&-{{\sqrt{6}\sqrt{\pi }L_{-4 , 1 , -1}A_3^1 }\over {7\sqrt{105}}}+{{4 \sqrt{\pi }L_{-4 , 3 , 0} A_3^0}\over {63\sqrt{5}}} \nonumber \\&+{{3\sqrt{\pi }L_{-4 , 1 , 0} A_3^0}\over {7\sqrt{105}}}-{{ \sqrt{\pi }L_{-4 , 3 , 1} A_3^{ -1 }}\over {21\sqrt{5}}} \nonumber \\&-{{\sqrt{6}\sqrt{\pi }L _{-4 , 1 , 1} A_3^{ -1 }}\over {7 \sqrt{105}}}+{{\sqrt{5}\sqrt{\pi }L_{-4 , 3 , 3 } A_3^{ -3 }}\over {63}} \nonumber \\\end{aligned}$$
(F.3)
$$\begin{aligned} g_{1,2,0}(s)= & {} -{{2\sqrt{6}\sqrt{\pi }B_1^{ -1 } L_{1 , 3 , 1}}\over {\sqrt{105}}}+{{6 \sqrt{\pi } B_1^{ 0} L_{1 , 3 , 0 }}\over {\sqrt{105}}} \nonumber \\&-{{2\sqrt{6}\sqrt{\pi }B_1^1 L_{1 , 3 , -1}}\over {\sqrt{105 }}}+{{2\sqrt{\pi } B_1^{ -1 } L_{1 , 1 , 1}}\over {3\sqrt{5}}} \nonumber \\&+{{4\sqrt{\pi } B_1^{ 0} L_{1 , 1 , 0}}\over {3\sqrt{5}}}+{{2 \sqrt{\pi } B_1^{1} L_{1 , 1 , -1 }}\over {3\sqrt{5}}} \end{aligned}$$
(F.4)
$$\begin{aligned} g_{3,2,0}(s)= & {} -{{2\sqrt{5}\sqrt{\pi } B_3^{-3} L_{3 , 3 , 3}}\over {21}}+{{2\sqrt{\pi } B_3^{ -1} L_{3 , 3 , 1} }\over {7\sqrt{5}}} \nonumber \\&-{{8\sqrt{\pi }B_3^{ 0} L_{3 , 3 , 0}}\over {21\sqrt{5}}}+{{2\sqrt{\pi } B_3^{1} L_{3 , 3 , -1} }\over {7\sqrt{5}}}\nonumber \\&-{{2\sqrt{5}\sqrt{\pi } B_3^{ 3} L_{3 , 3 , -3}}\over {21}}+{{6\sqrt{6} \sqrt{\pi } B_3^{-1} L_{3 , 1 , 1 }}\over {7\sqrt{105}}} \nonumber \\&-{{18\sqrt{\pi } B_3^{ 0} L_{3 , 1 , 0}}\over {7\sqrt{105}}}+{{6 \sqrt{6}\sqrt{\pi } B_3^{1} L _{3 , 1 , -1}}\over {7\sqrt{105}}} \end{aligned}$$
(F.5)
$$\begin{aligned} u_{1,2,0}(s)= & {} -{{2\sqrt{6}\sqrt{\pi }C_1^{-1 } L_{1 , 3 , 1 }}\over {\sqrt{105}}}+{{6 \sqrt{\pi } C_1^{0} L_{1 , 3 , 0 }}\over {\sqrt{105}}} \nonumber \\&-{{2\sqrt{6}\sqrt{\pi } C_1^{1 } L_{1 , 3 , -1 }}\over { \sqrt{105}}}+{{2\sqrt{\pi } C_1^{-1 } L_{1 , 1 , 1 }}\over {3\sqrt{5}}} \nonumber \\&+{{4\sqrt{ \pi } C_1^{0 } L_{1 , 1 , 0 , I }}\over {3\sqrt{5}}}+{{2\sqrt{\pi } C_1^{1 }L_{1 , 1 , -1 }}\over {3\sqrt{5}}} \end{aligned}$$
(F.6)
$$\begin{aligned} u_{3,2,0}(s)= & {} {{2\sqrt{5}\sqrt{\pi } C_3^{-3} L_{3 , 3 , 3 }}\over {21}}-{{2\sqrt{ \pi }C_3^{-1 } L_{3 , 3 , 1 , I }}\over {7\sqrt{5}}}\nonumber \\&+{{8\sqrt{\pi } C_3^{0} L_{3 , 3 , 0 }}\over {21\sqrt{5}}}-{{2\sqrt{\pi } C_3^{1} L_{3 , 3 , -1 }}\over {7\sqrt{5}}} \nonumber \\&+{{2\sqrt{5}\sqrt{\pi } C_3^{3} L_{3 , 3 , -3 } }\over {21}}-{{6\sqrt{6}\sqrt{\pi } C_3^{-1 } L_{3 , 1 , 1 }}\over {7\sqrt{105}}}\nonumber \\&+{{18 \sqrt{\pi } C_3^{0} L_{3 , 1 , 0 }}\over {7\sqrt{105}}} -{{6\sqrt{6}\sqrt{\pi } C_3^{1} L_{3 , 1 , -1 } }\over {7\sqrt{105}}} \end{aligned}$$
(F.7)
$$\begin{aligned}&DH_{2}^{0}\\&= {{15\sqrt{15} (H_0^0)^4 H_2^{-2} H_4^2} \over {112\pi ^{{{5}\over {2}}}}} - {{5\sqrt{15} (H_0^0)^3 H_2^{-2} H_4^2 }\over {28\pi ^2}} \\&+{{3\sqrt{15} (H_0^0)^2 H_2^{-2} H_4^2 }\over {14\pi ^{{{3 }\over {2}}}}}-{{3\sqrt{15} H_0^0 H_2^{-2} H_4^2 }\over {14\pi }} \\&+{{\sqrt{15} H_2^{-2} H_4^2 }\over {7\sqrt{\pi }}}+{{15\sqrt{6 }\sqrt{15}\sqrt{21} (H_0^0)^3 (H_1^{-1})^2 H_4^2 }\over {56\sqrt{105}\pi ^{{{5}\over {2 }}}}} \\&-{{15\sqrt{6}\sqrt{15}\sqrt{21}(H_0^0)^2 (H_1^{-1})^2 H_4^2 }\over {56\sqrt{105}\pi ^2}}+{{3\sqrt{6}\sqrt{15}\sqrt{21} H_0^0 (H_1^{-1})^2 H_4^2 }\over {14\sqrt{105}\pi ^{ {{3}\over {2}}}}} \\&-{{3\sqrt{6}\sqrt{15}\sqrt{21} (H_1^{-1})^2 H_4^2 }\over {28\sqrt{105}\pi }}-{{15 \sqrt{30} (H_0^0)^4 H_2^{-1} H_4^1 }\over {112\pi ^{{{5}\over {2}}}}} \\&+{{5\sqrt{30} (H_0^0)^3 H_2^{-1} H_4^1 }\over {28\pi ^2}}-{{3\sqrt{30}(H_0^0)^2 H_2^{-1} H_4^1 }\over {14\pi ^{{{3}\over {2}}}}} \\&+{{3\sqrt{30}H_0^0 H_2^{-1} H_4^1 }\over {14 \pi }}-{{\sqrt{30} H_2^{-1} H_4^1 }\over {7\sqrt{\pi }}}\\&-{{15\sqrt{6}\sqrt{15}\sqrt{21} (H_0^0)^3 H_1^{-1} H_1^0 H_4^1 }\over {56\sqrt{105}\pi ^{{{5}\over {2}}}}}-{{45 \sqrt{10}\sqrt{21} (H_0^0)^3 H_1^{-1} H_1^0 H_4^1 }\over {56\sqrt{105}\pi ^{{{5}\over {2}}}}} \\&+{{15\sqrt{6}\sqrt{15}\sqrt{21} (H_0^0)^2 H_1^{-1} H_1^0 H_4^1 }\over {56\sqrt{105}\pi ^2}}+{{45\sqrt{10}\sqrt{21} (H_0^0)^2 H_1^{-1} H_1^0 H_4^1 }\over {56\sqrt{105}\pi ^2}} \\&-{{3\sqrt{6} \sqrt{15}\sqrt{21}H_0^0 H_1^{-1} H_1^0 H_4^1 }\over {14\sqrt{105}\pi ^{ {{3}\over {2}}}}}-{{9\sqrt{10}\sqrt{21}H_0^0 H_1^{-1} H_1^0 H_4^1 }\over {14 \sqrt{105}\pi ^{{{3}\over {2}}}}} \\&+{{3\sqrt{6}\sqrt{15}\sqrt{21 } H_1^{-1} H_1^0 H_4^1 }\over {28\sqrt{105}\pi }}+{{9\sqrt{10}\sqrt{21} H_1^{-1} H_1^0 H_4^1 }\over {28\sqrt{105 }\pi }} \\&+{{45 (H_0^0)^4 H_2^0 H_4^0 }\over {56\pi ^{{{5}\over {2}}}}}-{{15 (H_0^0)^3 H_2^0 H_4^0 }\over {14\pi ^2}} +{{9(H_0^0)^2 H_2^0 H_4^0 }\over {7\pi ^{{{3}\over {2}}}}} \\&-{{9H_0^0 H_2^0 H_4^0 }\over {7\pi }} +{{6H_2^0 H_4^0 }\over {7\sqrt{\pi }}}+{{45\sqrt{21} (H_0^0)^3 H_1^{-1} H_1^1 H_4^0 }\over {14\sqrt{105}\pi ^{{{5}\over {2}}}}} \\&-{{45 \sqrt{21}(H_0^0)^2 H_1^{-1} H_1^1 H_4^0 }\over {14\sqrt{105}\pi ^2}}+{{18 \sqrt{21}H_0^0 H_1^{-1} H_1^1 H_4^0 }\over {7\sqrt{105}\pi ^{{{3}\over {2}} }}} \\&-{{9\sqrt{21} H_1^{-1} H_1^1 H_4^0 }\over {7\sqrt{105}\pi }}+{{45\sqrt{21} (H_0^0)^3 (H_1^0)^2 H_4^0 }\over {14\sqrt{105}\pi ^{{{5}\over {2}}}}} \end{aligned}$$
$$\begin{aligned}&-{{45\sqrt{21} (H_0^0)^2 (H_1^0)^2 H_4^0 }\over {14\sqrt{105}\pi ^2}}+{{18\sqrt{21}H_0^0 (H_1^0)^2 H_4^0 }\over {7\sqrt{105} \pi ^{{{3}\over {2}}}}} \\&-{{9\sqrt{21} (H_1^0)^2 H_4^0 }\over {7\sqrt{105}\pi }}-{{15\sqrt{30} (H_0^0)^4 H_2^1 H_4^{-1} }\over {112 \pi ^{{{5}\over {2}}}}} \\&+{{5\sqrt{30} (H_0^0)^3 H_2^1 H_4^{-1} }\over {28\pi ^2}}-{{3\sqrt{30} (H_0^0)^2 H_2^1 H_4^{-1} }\over {14\pi ^{{{3}\over {2}}}}} \\&+{{3\sqrt{30}H_0^0 H_2^1 H_4^{-1} }\over {14\pi }}-{{\sqrt{30 } H_2^1 H_4^{-1} }\over {7\sqrt{\pi }}} \\&-{{15\sqrt{6}\sqrt{15}\sqrt{21} (H_0^0)^3 H_1^0 H_1^1 H_4^{-1} }\over {56 \sqrt{105}\pi ^{{{5}\over {2}}}}}-{{45\sqrt{10}\sqrt{21} (H_0^0)^3 H_1^0 H_1^1 H_4^{-1} }\over {56\sqrt{105}\pi ^{{{5}\over {2}}}}} \\&+{{15 \sqrt{6}\sqrt{15}\sqrt{21}(H_0^0)^2 H_1^0 H_1^1 H_4^{-1} }\over {56\sqrt{105 }\pi ^2}}+{{45\sqrt{10}\sqrt{21}(H_0^0)^2 H_1^0 H_1^1 H_4^{-1} }\over {56 \sqrt{105}\pi ^2}} \\&-{{3\sqrt{6}\sqrt{15}\sqrt{21} H_0^0 H_1^0 H_1^1 H_4^{-1} }\over {14\sqrt{105}\pi ^{{{3}\over {2}}}}}-{{9\sqrt{10} \sqrt{21}H_0^0 H_1^0 H_1^1 H_4^{-1} }\over {14\sqrt{105}\pi ^{{{3}\over {2 }}}}} \\&+{{3\sqrt{6}\sqrt{15}\sqrt{21} H_1^0 H_1^1 H_4^{-1} }\over {28\sqrt{105}\pi }}+{{9\sqrt{10}\sqrt{21} H_1^0 H_1^1 H_4^{-1} }\over {28\sqrt{105}\pi }} \\&+{{15\sqrt{15} (H_0^0)^4 H_2^2 H_4^{-2} }\over {112\pi ^{{{5}\over {2}}}}}-{{5\sqrt{15} (H_0^0)^3 H_2^2 H_4^{-2} }\over {28\pi ^2}} \\&+{{3\sqrt{15}(H_0^0)^2 H_2^2 H_4^{-2} }\over {14\pi ^{{{3}\over {2}}}}}-{{3\sqrt{15} H_0^0 H_2^2 H_4^{-2} }\over {14\pi }} \\&+{{\sqrt{15} H_2^2 H_4^{-2} }\over {7 \sqrt{\pi }}}+{{15\sqrt{6}\sqrt{15}\sqrt{21} (H_0^0)^3 (H_1^1)^2 H_4^{-2} }\over {56 \sqrt{105}\pi ^{{{5}\over {2}}}}} \\&-{{15\sqrt{6}\sqrt{15}\sqrt{21 }(H_0^0)^2 (H_1^1)^2 H_4^{-2} }\over {56\sqrt{105}\pi ^2}}+{{3\sqrt{6}\sqrt{15} \sqrt{21}H_0^0 (H_1^1)^2 H_4^{-2} }\over {14\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&-{{3\sqrt{6} \sqrt{15}\sqrt{21} (H_1^1)^2 H_4^{-2} }\over {28\sqrt{105}\pi }}+{{5\sqrt{5} (H_0^0)^4 H_3^{-3} H_3^3 }\over {16\pi ^{{{5}\over {2 }}}}} \\&-{{5\sqrt{5} (H_0^0)^3 H_3^{-3} H_3^3 }\over {12\pi ^2}}+{{\sqrt{5} (H_0^0)^2 H_3^{-3} H_3^3 }\over {2\pi ^{{{3 }\over {2}}}}} \\&-{{\sqrt{5}H_0^0 H_3^{-3} H_3^3 }\over {2\pi }}+{{\sqrt{5} H_3^{-3} H_3^3 }\over {3\sqrt{\pi }}} \\&+{{9\sqrt{5} \sqrt{15} (H_0^0)^3 H_1^{-1} H_2^{-2} H_3^3 }\over {4\sqrt{105}\pi ^{{{5}\over {2}} }}}+{{3\sqrt{5}\sqrt{6}\sqrt{10} (H_0^0)^3 H_1^{-1} H_2^{-2} H_3^3 }\over {4\sqrt{105}\pi ^{{{5}\over {2}}}}} \end{aligned}$$
$$\begin{aligned}&-{{9\sqrt{5}\sqrt{15} (H_0^0)^2 H_1^{-1} H_2^{-2} H_3^3 }\over {4\sqrt{105}\pi ^2}}-{{3\sqrt{5} \sqrt{6}\sqrt{10}(H_0^0)^2 H_1^{-1} H_2^{-2} H_3^3 }\over {4\sqrt{105}\pi ^2 }} \\&+{{9\sqrt{5}\sqrt{15}H_0^0 H_1^{-1} H_2^{-2} H_3^3 }\over {5\sqrt{105 }\pi ^{{{3}\over {2}}}}}+{{3\sqrt{5}\sqrt{6}\sqrt{10} H_0^0 H_1^{-1} H_2^{-2} H_3^3 }\over {5\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&-{{9\sqrt{5} \sqrt{15} H_1^{-1} H_2^{-2} H_3^3 }\over {10\sqrt{105}\pi }}-{{3\sqrt{5}\sqrt{6}\sqrt{10 } H_1^{-1} H_2^{-2} H_3^3 }\over {10\sqrt{105}\pi }} \\&+{{15\sqrt{6}\sqrt{15} (H_0^0)^2 (H_1^{-1})^3 H_3^3 }\over {8 \sqrt{105}\pi ^{{{5}\over {2}}}}}-{{5\sqrt{6}\sqrt{15} H_0^0 (H_1^{-1})^3 H_3^3 }\over {4 \sqrt{105}\pi ^2}} \\&+{{\sqrt{6}\sqrt{15} (H_1^{-1})^3 H_3^3 }\over {2\sqrt{105}\pi ^{{{3}\over {2}}}}}+{{3 \sqrt{5}\sqrt{6}\sqrt{15} (H_0^0)^3 H_1^{-1} H_2^{-1} H_3^2 }\over {4\sqrt{105 }\pi ^{{{5}\over {2}}}}} \\&-{{9\sqrt{5}\sqrt{10} (H_0^0)^3 H_1^{-1} H_2^{-1} H_3^2 }\over {4\sqrt{105}\pi ^{{{5}\over {2}}}}}-{{3\sqrt{5} \sqrt{6}\sqrt{15}(H_0^0)^2 H_1^{-1} H_2^{-1} H_3^2 }\over {4\sqrt{105}\pi ^2 }} \\&+{{9\sqrt{5}\sqrt{10}(H_0^0)^2 H_1^{-1} H_2^{-1} H_3^2 }\over {4\sqrt{105 }\pi ^2}}+{{3\sqrt{5}\sqrt{6}\sqrt{15}H_0^0 H_1^{-1} H_2^{-1} H_3^2 }\over {5\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&-{{9\sqrt{5}\sqrt{10} H_0^0 H_1^{-1} H_2^{-1} H_3^2 }\over {5\sqrt{105}\pi ^{{{3}\over {2}}}}}-{{3 \sqrt{5}\sqrt{6}\sqrt{15} H_1^{-1} H_2^{-1} H_3^2 }\over {10\sqrt{105}\pi }} \\&+{{9\sqrt{5 }\sqrt{10} H_1^{-1} H_2^{-1} H_3^2 }\over {10\sqrt{105}\pi }}+{{15\sqrt{3}\sqrt{6} \sqrt{15}(H_0^0)^2 (H_1^{-1})^2 H_1^0 H_3^2 }\over {56\sqrt{105}\pi ^{{{5 }\over {2}}}}} \\&+{{27\sqrt{2}\sqrt{6}\sqrt{10} (H_0^0)^2 (H_1^{-1})^2 H_1^0 H_3^2 }\over {28\sqrt{105}\pi ^{{{5}\over {2}}}}}-{{9\sqrt{3} \sqrt{10}(H_0^0)^2 (H_1^{-1})^2 H_1^0 H_3^2 }\over {8\sqrt{105}\pi ^{{{5 }\over {2}}}}} \\&-{{45\sqrt{5}\sqrt{6}(H_0^0)^2 (H_1^{-1})^2 H_1^0 H_3^2 }\over {28 \sqrt{105}\pi ^{{{5}\over {2}}}}}-{{5\sqrt{3}\sqrt{6}\sqrt{15 }H_0^0 (H_1^{-1})^2 H_1^0 H_3^2 }\over {28\sqrt{105}\pi ^2}} \\&-{{9\sqrt{2} \sqrt{6}\sqrt{10}H_0^0 (H_1^{-1})^2 H_1^0 H_3^2 }\over {14\sqrt{105}\pi ^2 }}+{{3\sqrt{3}\sqrt{10}H_0^0 (H_1^{-1})^2 H_1^0 H_3^2 }\over {4\sqrt{105 }\pi ^2}} \end{aligned}$$
$$\begin{aligned}&+{{15\sqrt{5}\sqrt{6}H_0^0 (H_1^{-1})^2 H_1^0 H_3^2 }\over {14 \sqrt{105}\pi ^2}}+{{\sqrt{3}\sqrt{6}\sqrt{15} (H_1^{-1})^2 H_1^0 H_3^2 }\over {14\sqrt{105 }\pi ^{{{3}\over {2}}}}} \\&+{{9\sqrt{2}\sqrt{6}\sqrt{10} (H_1^{-1})^2 H_1^0 H_3^2 }\over {35 \sqrt{105}\pi ^{{{3}\over {2}}}}}-{{3\sqrt{3}\sqrt{10} (H_1^{-1})^2 H_1^0 H_3^2 }\over {10 \sqrt{105}\pi ^{{{3}\over {2}}}}} \\&-{{3\sqrt{5}\sqrt{6} (H_1^{-1})^2 H_1^0 H_3^2 }\over {7 \sqrt{105}\pi ^{{{3}\over {2}}}}}-{{3\sqrt{5} (H_0^0)^4 H_3^{-1} H_3^1 }\over {16\pi ^{{{5 }\over {2}}}}} \\&+{{\sqrt{5} (H_0^0)^3 H_3^{-1} H_3^1 }\over {4\pi ^2}}-{{3\sqrt{5} (H_0^0)^2 H_3^{-1} H_3^1 }\over {10 \pi ^{{{3}\over {2}}}}}\\&+{{3\sqrt{5}H_0^0 H_3^{-1} H_3^1 }\over {10\pi }}-{{\sqrt{5} H_3^{-1} H_3^1 }\over {5\sqrt{\pi }}} \\&-{{45 \sqrt{2}\sqrt{5} (H_0^0)^3 H_1^0 H_2^{-1} H_3^1 }\over {4\sqrt{105}\pi ^{ {{5}\over {2}}}}}+{{45\sqrt{2}\sqrt{5}(H_0^0)^2 H_1^0 H_2^{-1} H_3^1 }\over {4 \sqrt{105}\pi ^2}} \\&-{{9\sqrt{2}\sqrt{5}H_0^0 H_1^0 H_2^{-1} H_3^1 }\over {\sqrt{105}\pi ^{{{3}\over {2}}}}}+{{9\sqrt{2}\sqrt{5} H_1^0 H_2^{-1} H_3^1 }\over {2 \sqrt{105}\pi }} \\&+{{45\sqrt{5} (H_0^0)^3 H_1^1 H_2^{-2} H_3^1 }\over {4 \sqrt{105}\pi ^{{{5}\over {2}}}}}-{{45\sqrt{5} (H_0^0)^2 H_1^1 H_2^{-2} H_3^1 }\over {4\sqrt{105}\pi ^2}} \\&+{{9\sqrt{5} H_0^0 H_1^1 H_2^{-2} H_3^1 }\over {\sqrt{105}\pi ^{{{3}\over {2}}}}}-{{9\sqrt{5} H_1^1 H_2^{-2} H_3^1 }\over {2 \sqrt{105}\pi }} \\&+{{135\sqrt{6}(H_0^0)^2 (H_1^{-1})^2 H_1^1 H_3^1 }\over {8 \sqrt{105}\pi ^{{{5}\over {2}}}}}-{{45\sqrt{6} H_0^0 (H_1^{-1})^2 H_1^1 H_3^1 }\over {4\sqrt{105}\pi ^2}} \\&+{{9\sqrt{6} (H_1^{-1})^2 H_1^1 H_3^1 }\over {2\sqrt{105 }\pi ^{{{3}\over {2}}}}}-{{45\sqrt{10}\sqrt{15} (H_0^0)^2 H_1^{-1} (H_1^0)^2 H_3^1 }\over {56\sqrt{105}\pi ^{{{5}\over {2}}}}} \\&-{{27\sqrt{6} (H_0^0)^2 H_1^{-1} (H_1^0)^2 H_3^1 }\over {2\sqrt{105}\pi ^{{{5}\over {2}}}}}+{{9 \sqrt{2}\sqrt{3}(H_0^0)^2 H_1^{-1} (H_1^0)^2 H_3^1 }\over {14\sqrt{105}\pi ^{ {{5}\over {2}}}}} \\&+{{15\sqrt{10}\sqrt{15}H_0^0 H_1^{-1} (H_1^0)^2 H_3^1 }\over {28\sqrt{105}\pi ^2}}+{{9\sqrt{6}H_0^0 H_1^{-1} (H_1^0)^2 H_3^1 }\over {\sqrt{105}\pi ^2}} \\&-{{3\sqrt{2}\sqrt{3} H_0^0 H_1^{-1} (H_1^0)^2 H_3^1 }\over {7\sqrt{105}\pi ^2}}-{{3\sqrt{10}\sqrt{15} H_1^{-1} (H_1^0)^2 H_3^1 }\over {14\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&-{{18\sqrt{6} H_1^{-1} (H_1^0)^2 H_3^1 }\over {5 \sqrt{105}\pi ^{{{3}\over {2}}}}}+{{6\sqrt{2}\sqrt{3} H_1^{-1} (H_1^0)^2 H_3^1 }\over {35 \sqrt{105}\pi ^{{{3}\over {2}}}}} \\&-{{45\sqrt{6} (H_0^0)^4 H_1^{-1} H_3^1 }\over {16\sqrt{105 }\pi ^{{{5}\over {2}}}}}+{{15\sqrt{6} (H_0^0)^3 H_1^{-1} H_3^1 }\over {4\sqrt{105}\pi ^2 }} \end{aligned}$$
$$\begin{aligned}&-{{9\sqrt{6}(H_0^0)^2 H_1^{-1} H_3^1 }\over {2\sqrt{105}\pi ^{{{3}\over {2}}}}}+{{9 \sqrt{6}H_0^0 H_1^{-1} H_3^1 }\over {2\sqrt{105}\pi }} \\&-{{3\sqrt{6} H_1^{-1} H_3^1 }\over {\sqrt{105}\sqrt{\pi }}}+{{\sqrt{5 } (H_0^0)^4 (H_3^0)^2 }\over {8\pi ^{{{5 }\over {2}}}}} -{{\sqrt{5} (H_0^0)^3 (H_3^0)^2 }\over {6\pi ^2}}\\&+{{\sqrt{5}(H_0^0)^2 (H_3^0)^2 }\over {5\pi ^{{{3}\over {2}}}}}-{{\sqrt{5}H_0^0 (H_3^0)^2 }\over {5\pi }}+{{2\sqrt{5 } (H_3^0)^2 }\over {15\sqrt{\pi }}}\\&-{{3\sqrt{2} \sqrt{5}\sqrt{6} (H_0^0)^3 H_1^{-1} H_2^1 H_3^0 }\over {4\sqrt{105}\pi ^{{{5 }\over {2}}}}}-{{9\sqrt{3}\sqrt{5} (H_0^0)^3 H_1^{-1} H_2^1 H_3^0 }\over {4 \sqrt{105}\pi ^{{{5}\over {2}}}}} \\&+{{3\sqrt{2}\sqrt{5}\sqrt{6 }(H_0^0)^2 H_1^{-1} H_2^1 H_3^0 }\over {4\sqrt{105}\pi ^2}}+{{9\sqrt{3} \sqrt{5}(H_0^0)^2 H_1^{-1} H_2^1 H_3^0 }\over {4\sqrt{105}\pi ^2}} \\&-{{3 \sqrt{2}\sqrt{5}\sqrt{6}H_0^0 H_1^{-1} H_2^1 H_3^0 }\over {5\sqrt{105 }\pi ^{{{3}\over {2}}}}}-{{9\sqrt{3}\sqrt{5} H_0^0 H_1^{-1} H_2^1 H_3^0 }\over {5\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&+{{3\sqrt{2} \sqrt{5}\sqrt{6} H_1^{-1} H_2^1 H_3^0 }\over {10\sqrt{105}\pi }}+{{9\sqrt{3}\sqrt{5 } H_1^{-1} H_2^1 H_3^0 }\over {10\sqrt{105}\pi }} \\&+{{45\sqrt{5} (H_0^0)^3 H_1^0 H_2^0 H_3^0 }\over {2 \sqrt{105}\pi ^{{{5}\over {2}}}}}-{{45\sqrt{5} (H_0^0)^2 H_1^0 H_2^0 H_3^0 }\over {2\sqrt{105}\pi ^2}} \\&+{{18\sqrt{5} H_0^0 H_1^0 H_2^0 H_3^0 }\over {\sqrt{105}\pi ^{{{3}\over {2}}}}}-{{9\sqrt{5} H_1^0 H_2^0 H_3^0 }\over { \sqrt{105}\pi }} \\&-{{3\sqrt{2}\sqrt{5}\sqrt{6} (H_0^0)^3 H_1^1 H_2^{-1} H_3^0 }\over {4\sqrt{105}\pi ^{{{5}\over {2}}}}}-{{9\sqrt{3} \sqrt{5} (H_0^0)^3 H_1^1 H_2^{-1} H_3^0 }\over {4\sqrt{105}\pi ^{{{5}\over {2}} }}} \\&+{{3\sqrt{2}\sqrt{5}\sqrt{6}(H_0^0)^2 H_1^1 H_2^{-1} H_3^0 }\over {4 \sqrt{105}\pi ^2}}+{{9\sqrt{3}\sqrt{5}(H_0^0)^2 H_1^1 H_2^{-1} H_3^0 }\over {4\sqrt{105}\pi ^2}} \\&-{{3\sqrt{2}\sqrt{5}\sqrt{6}H_0^0 H_1^1 H_2^{-1} H_3^0 }\over {5\sqrt{105}\pi ^{{{3}\over {2}}}}}-{{9 \sqrt{3}\sqrt{5}H_0^0 H_1^1 H_2^{-1} H_3^0 }\over {5\sqrt{105}\pi ^{ {{3}\over {2}}}}} \\&+{{3\sqrt{2}\sqrt{5}\sqrt{6} H_1^1 H_2^{-1} H_3^0 }\over {10\sqrt{105 }\pi }}+{{9\sqrt{3}\sqrt{5} H_1^1 H_2^{-1} H_3^0 }\over {10\sqrt{105}\pi }} \\&-{{15 \sqrt{6}\sqrt{10}\sqrt{15}(H_0^0)^2 H_1^{-1} H_1^0 H_1^1 H_3^0 }\over {28\sqrt{105}\pi ^{{{5}\over {2}}}}}\\&+{{27\sqrt{2} \sqrt{3}\sqrt{6}(H_0^0)^2 H_1^{-1} H_1^0 H_1^1 H_3^0 }\over {14 \sqrt{105}\pi ^{{{5}\over {2}}}}} \\&-{{117(H_0^0)^2 H_1^{-1} H_1^0 H_1^1 H_3^0 }\over {4\sqrt{105}\pi ^{{{5}\over {2}}}}}+{{5 \sqrt{6}\sqrt{10}\sqrt{15}H_0^0 H_1^{-1} H_1^0 H_1^1 H_3^0 }\over {14\sqrt{105}\pi ^2}} \\&-{{9\sqrt{2}\sqrt{3} \sqrt{6}H_0^0 H_1^{-1} H_1^0 H_1^1 H_3^0 }\over {7\sqrt{105 }\pi ^2}}+{{39H_0^0 H_1^{-1} H_1^0 H_1^1 H_3^0 }\over {2 \sqrt{105}\pi ^2}} \\&-{{\sqrt{6}\sqrt{10}\sqrt{15} H_1^{-1} H_1^0 H_1^1 H_3^0 }\over {7\sqrt{105}\pi ^{{{3}\over {2}}}}}+{{18\sqrt{2} \sqrt{3}\sqrt{6} H_1^{-1} H_1^0 H_1^1 H_3^0 }\over {35\sqrt{105}\pi ^{ {{3}\over {2}}}}} \end{aligned}$$
$$\begin{aligned}&-{{39 H_1^{-1} H_1^0 H_1^1 H_3^0 }\over {5\sqrt{105}\pi ^{{{3 }\over {2}}}}}+{{315(H_0^0)^2 (H_1^0)^3 H_3^0 }\over {8\sqrt{105}\pi ^{{{5}\over {2}}}}} \\&-{{105 H_0^0 (H_1^0)^3 H_3^0 }\over {4\sqrt{105}\pi ^2}}+{{21 (H_1^0)^3 H_3^0 }\over {2\sqrt{105}\pi ^{{{3}\over {2}}}}}+{{135 (H_0^0)^4 H_1^0 H_3^0 }\over {16 \sqrt{105}\pi ^{{{5}\over {2}}}}}\\&-{{45 (H_0^0)^3 H_1^0 H_3^0 }\over {4\sqrt{105}\pi ^2}} +{{27(H_0^0)^2 H_1^0 H_3^0 }\over {2\sqrt{105}\pi ^{{{3}\over {2}}}}}-{{27 H_0^0 H_1^0 H_3^0 }\over {2\sqrt{105 }\pi }} \\&+{{9 H_1^0 H_3^0 }\over {\sqrt{105 }\sqrt{\pi }}}+{{45\sqrt{5} (H_0^0)^3 H_1^{-1} H_2^2 H_3^{-1} }\over {4\sqrt{105 }\pi ^{{{5}\over {2}}}}} \\&-{{45\sqrt{5}(H_0^0)^2 H_1^{-1} H_2^2 H_3^{-1} }\over {4\sqrt{105}\pi ^2}}+{{9\sqrt{5}H_0^0 H_1^{-1} H_2^2 H_3^{-1} }\over {\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&-{{9\sqrt{5} H_1^{-1} H_2^2 H_3^{-1} }\over {2\sqrt{105 }\pi }}-{{45\sqrt{2}\sqrt{5} (H_0^0)^3 H_1^0 H_2^1 H_3^{-1} }\over {4 \sqrt{105}\pi ^{{{5}\over {2}}}}} \\&+{{45\sqrt{2}\sqrt{5} (H_0^0)^2 H_1^0 H_2^1 H_3^{-1} }\over {4\sqrt{105}\pi ^2}}-{{9\sqrt{2} \sqrt{5}H_0^0 H_1^0 H_2^1 H_3^{-1} }\over {\sqrt{105}\pi ^{{{3}\over {2}}} }} \\&+{{9\sqrt{2}\sqrt{5} H_1^0 H_2^1 H_3^{-1} }\over {2\sqrt{105}\pi }}+{{135\sqrt{6} (H_0^0)^2 H_1^{-1} (H_1^1)^2 H_3^{-1} }\over {8\sqrt{105}\pi ^{{{5}\over {2}}}}} \\&-{{45 \sqrt{6}H_0^0 H_1^{-1} (H_1^1)^2 H_3^{-1} }\over {4\sqrt{105}\pi ^2}}+{{9 \sqrt{6} H_1^{-1} (H_1^1)^2 H_3^{-1} }\over {2\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&-{{45\sqrt{10} \sqrt{15}(H_0^0)^2 (H_1^0)^2 H_1^1 H_3^{-1} }\over {56\sqrt{105}\pi ^{{{5}\over {2 }}}}}-{{27\sqrt{6}(H_0^0)^2 (H_1^0)^2 H_1^1 H_3^{-1} }\over {2\sqrt{105}\pi ^{ {{5}\over {2}}}}} \\&+{{9\sqrt{2}\sqrt{3}(H_0^0)^2 (H_1^0)^2 H_1^1 H_3^{-1} }\over {14 \sqrt{105}\pi ^{{{5}\over {2}}}}}+{{15\sqrt{10}\sqrt{15}H_0^0 (H_1^0)^2 H_1^1 H_3^{-1} }\over {28\sqrt{105}\pi ^2}} \\&+{{9\sqrt{6}H_0^0 (H_1^0)^2 H_1^1 H_3^{-1} }\over {\sqrt{105}\pi ^2}}-{{3\sqrt{2}\sqrt{3 }H_0^0 (H_1^0)^2 H_1^1 H_3^{-1} }\over {7\sqrt{105}\pi ^2}} \\&-{{3\sqrt{10} \sqrt{15} (H_1^0)^2 H_1^1 H_3^{-1} }\over {14\sqrt{105}\pi ^{{{3}\over {2}}}}}-{{18\sqrt{6} (H_1^0)^2 H_1^1 H_3^{-1} }\over {5\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&+{{6\sqrt{2}\sqrt{3} (H_1^0)^2 H_1^1 H_3^{-1} }\over {35\sqrt{105}\pi ^{{{3}\over {2}}}}}-{{45\sqrt{6} (H_0^0)^4 H_1^1 H_3^{-1} }\over {16 \sqrt{105}\pi ^{{{5}\over {2}}}}} \\&+{{15\sqrt{6} (H_0^0)^3 H_1^1 H_3^{-1} }\over {4\sqrt{105 }\pi ^2}}-{{9\sqrt{6}(H_0^0)^2 H_1^1 H_3^{-1} }\over {2\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&+{{9 \sqrt{6}H_0^0 H_1^1 H_3^{-1} }\over {2\sqrt{105}\pi }}-{{3\sqrt{6} H_1^1 H_3^{-1} }\over {\sqrt{105}\sqrt{\pi }}} \\&+{{3 \sqrt{5}\sqrt{6}\sqrt{15} (H_0^0)^3 H_1^1 H_2^1 H_3^{-2} }\over {4\sqrt{105 }\pi ^{{{5}\over {2}}}}}-{{9\sqrt{5}\sqrt{10} (H_0^0)^3 H_1^1 H_2^1 H_3^{-2} }\over {4\sqrt{105}\pi ^{{{5}\over {2}}}}}\\&-{{3\sqrt{5} \sqrt{6}\sqrt{15}(H_0^0)^2 H_1^1 H_2^1 H_3^{-2} }\over {4\sqrt{105}\pi ^2 }}+{{9\sqrt{5}\sqrt{10}(H_0^0)^2 H_1^1 H_2^1 H_3^{-2} }\over {4\sqrt{105 }\pi ^2}} \\&+{{3\sqrt{5}\sqrt{6}\sqrt{15}H_0^0 H_1^1 H_2^1 H_3^{-2} }\over {5\sqrt{105}\pi ^{{{3}\over {2}}}}}-{{9\sqrt{5}\sqrt{10} H_0^0 H_1^1 H_2^1 H_3^{-2} }\over {5\sqrt{105}\pi ^{{{3}\over {2}}}}} \end{aligned}$$
$$\begin{aligned}&-{{3 \sqrt{5}\sqrt{6}\sqrt{15} H_1^1 H_2^1 H_3^{-2} }\over {10\sqrt{105}\pi }}+{{9 \sqrt{5}\sqrt{10} H_1^1 H_2^1 H_3^{-2} }\over {10\sqrt{105}\pi }} \\&+{{15\sqrt{3} \sqrt{6}\sqrt{15}(H_0^0)^2 H_1^0 (H_1^1)^2 H_3^{-2} }\over {56\sqrt{105}\pi ^{ {{5}\over {2}}}}}\\&+{{27\sqrt{2}\sqrt{6}\sqrt{10} (H_0^0)^2 H_1^0 (H_1^1)^2 H_3^{-2} }\over {28\sqrt{105}\pi ^{{{5}\over {2}}}}} \\&-{{9\sqrt{3} \sqrt{10}(H_0^0)^2 H_1^0 (H_1^1)^2 H_3^{-2} }\over {8\sqrt{105}\pi ^{{{5}\over {2 }}}}}-{{45\sqrt{5}\sqrt{6}(H_0^0)^2 H_1^0 (H_1^1)^2 H_3^{-2} }\over {28 \sqrt{105}\pi ^{{{5}\over {2}}}}} \\&-{{5\sqrt{3}\sqrt{6}\sqrt{15} H_0^0 H_1^0 (H_1^1)^2 H_3^{-2} }\over {28\sqrt{105}\pi ^2}}\\&-{{9\sqrt{2} \sqrt{6}\sqrt{10}H_0^0 H_1^0 (H_1^1)^2 H_3^{-2} }\over {14\sqrt{105}\pi ^2 }} \\&+{{3\sqrt{3}\sqrt{10}H_0^0 H_1^0 (H_1^1)^2 H_3^{-2} }\over {4\sqrt{105 }\pi ^2}}+{{15\sqrt{5}\sqrt{6}H_0^0 H_1^0 (H_1^1)^2 H_3^{-2} }\over {14 \sqrt{105}\pi ^2}} \\&+{{\sqrt{3}\sqrt{6}\sqrt{15} H_1^0 (H_1^1)^2 H_3^{-2} }\over {14 \sqrt{105}\pi ^{{{3}\over {2}}}}}+{{9\sqrt{2}\sqrt{6}\sqrt{10} H_1^0 (H_1^1)^2 H_3^{-2} }\over {35\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&-{{3\sqrt{3}\sqrt{10 } H_1^0 (H_1^1)^2 H_3^{-2} }\over {10\sqrt{105}\pi ^{{{3}\over {2}}}}}-{{3\sqrt{5}\sqrt{6} H_1^0 (H_1^1)^2 H_3^{-2} }\over {7\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&+{{9\sqrt{5}\sqrt{15} (H_0^0)^3 H_1^1 H_2^2 H_3^{-3} }\over {4\sqrt{105}\pi ^{{{5}\over {2}}}}}+{{3 \sqrt{5}\sqrt{6}\sqrt{10} (H_0^0)^3 H_1^1 H_2^2 H_3^{-3} }\over {4\sqrt{105 }\pi ^{{{5}\over {2}}}}} \\&-{{9\sqrt{5}\sqrt{15} (H_0^0)^2 H_1^1 H_2^2 H_3^{-3} }\over {4\sqrt{105}\pi ^2}}-{{3\sqrt{5}\sqrt{6}\sqrt{10 }(H_0^0)^2 H_1^1 H_2^2 H_3^{-3} }\over {4\sqrt{105}\pi ^2}} \\&+{{9\sqrt{5} \sqrt{15}H_0^0 H_1^1 H_2^2 H_3^{-3} }\over {5\sqrt{105}\pi ^{{{3}\over {2 }}}}}+{{3\sqrt{5}\sqrt{6}\sqrt{10}H_0^0 H_1^1 H_2^2 H_3^{-3} }\over {5 \sqrt{105}\pi ^{{{3}\over {2}}}}} \\&-{{9\sqrt{5}\sqrt{15} H_1^1 H_2^2 H_3^{-3} }\over {10 \sqrt{105}\pi }}-{{3\sqrt{5}\sqrt{6}\sqrt{10} H_1^1 H_2^2 H_3^{-3} }\over {10\sqrt{105 }\pi }} \\&+{{15\sqrt{6}\sqrt{15}(H_0^0)^2 (H_1^1)^3 H_3^{-3} }\over {8\sqrt{105}\pi ^{{{5 }\over {2}}}}}-{{5\sqrt{6}\sqrt{15}H_0^0 (H_1^1)^3 H_3^{-3} }\over {4\sqrt{105}\pi ^2 }} \end{aligned}$$
$$\begin{aligned}&+{{\sqrt{6}\sqrt{15} (H_1^1)^3 H_3^{-3} }\over {2\sqrt{105}\pi ^{{{3}\over {2}}}}}+{{75 (H_0^0)^3 H_2^{-2} H_2^0 H_2^2 }\over {28\pi ^{{{5}\over {2}}}}} \\&-{{75(H_0^0)^2 H_2^{-2} H_2^0 H_2^2 }\over {28\pi ^2}}+{{15H_0^0 H_2^{-2} H_2^0 H_2^2 }\over {7\pi ^{{{3}\over {2}} }}}\\&-{{15 H_2^{-2} H_2^0 H_2^2 }\over {14\pi }}+{{675\sqrt{6}\sqrt{21} (H_0^0)^2 (H_1^{-1})^2 H_2^0 H_2^2 }\over {392\sqrt{105}\pi ^{{{5}\over {2}}}}} \\&+{{45\sqrt{5} \sqrt{6}(H_0^0)^2 (H_1^{-1})^2 H_2^0 H_2^2 }\over {98\pi ^{{{5}\over {2}}}}}-{{225 \sqrt{6}\sqrt{21}H_0^0 (H_1^{-1})^2 H_2^0 H_2^2 }\over {196\sqrt{105}\pi ^2 }} \\&-{{15\sqrt{5}\sqrt{6}H_0^0 (H_1^{-1})^2 H_2^0 H_2^2 }\over {49\pi ^2}}+{{45\sqrt{6}\sqrt{21} (H_1^{-1})^2 H_2^0 H_2^2 }\over {98\sqrt{105}\pi ^{{{3}\over {2 }}}}} \\&+{{6\sqrt{5}\sqrt{6} (H_1^{-1})^2 H_2^0 H_2^2 }\over {49\pi ^{{{3}\over {2}}}}}-{{5 \sqrt{5}\sqrt{30} (H_0^0)^3 (H_2^{-1})^2 H_2^2 }\over {196\pi ^{{{5}\over {2}}}}} \\&+{{5\sqrt{10} \sqrt{15} (H_0^0)^3 (H_2^{-1})^2 H_2^2 }\over {196\pi ^{{{5}\over {2}}}}}+{{5\sqrt{5}\sqrt{30 }(H_0^0)^2 (H_2^{-1})^2 H_2^2 }\over {196\pi ^2}} \\&-{{5\sqrt{10}\sqrt{15} (H_0^0)^2 (H_2^{-1})^2 H_2^2 }\over {196\pi ^2 }}-{{\sqrt{5}\sqrt{30}H_0^0 (H_2^{-1})^2 H_2^2 }\over {49\pi ^{{{3}\over {2}}}}} \\&+{{ \sqrt{10}\sqrt{15}H_0^0 (H_2^{-1})^2 H_2^2 }\over {49\pi ^{{{3}\over {2}}}}}+{{\sqrt{5} \sqrt{30} (H_2^{-1})^2 H_2^2 }\over {98\pi }} \\&-{{\sqrt{10}\sqrt{15} (H_2^{-1})^2 H_2^2 }\over {98\pi }}-{{45\sqrt{5}\sqrt{6}\sqrt{15}\sqrt{21 }(H_0^0)^2 H_1^{-1} H_1^0 H_2^{-1} H_2^2 }\over {392\sqrt{105} \pi ^{{{5}\over {2}}}}} \\&-{{135\sqrt{5}\sqrt{10}\sqrt{21} (H_0^0)^2 H_1^{-1} H_1^0 H_2^{-1} H_2^2 }\over {392\sqrt{105}\pi ^{{{5}\over {2}}}}}\\&-{{9\sqrt{3}\sqrt{5}\sqrt{6} (H_0^0)^2 H_1^{-1} H_1^0 H_2^{-1} H_2^2 }\over {196\pi ^{{{5}\over {2}}}}} \\&+{{81 \sqrt{2}\sqrt{5}(H_0^0)^2 H_1^{-1} H_1^0 H_2^{-1} H_2^2 }\over {98 \pi ^{{{5}\over {2}}}}}\\&+{{15\sqrt{5}\sqrt{6}\sqrt{15}\sqrt{21 }H_0^0 H_1^{-1} H_1^0 H_2^{-1} H_2^2 }\over {196\sqrt{105}\pi ^2 }} \\&+{{45\sqrt{5}\sqrt{10}\sqrt{21}H_0^0 H_1^{-1} H_1^0 H_2^{-1} H_2^2 }\over {196\sqrt{105}\pi ^2}}\\&+{{3\sqrt{3} \sqrt{5}\sqrt{6}H_0^0 H_1^{-1} H_1^0 H_2^{-1} H_2^2 }\over {98 \pi ^2}} \\&-{{27\sqrt{2}\sqrt{5}H_0^0 H_1^{-1} H_1^0 H_2^{-1} H_2^2 }\over {49\pi ^2}}\\&-{{3\sqrt{5}\sqrt{6}\sqrt{15}\sqrt{21 } H_1^{-1} H_1^0 H_2^{-1} H_2^2 }\over {98\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&-{{9 \sqrt{5}\sqrt{10}\sqrt{21} H_1^{-1} H_1^0 H_2^{-1} H_2^2 }\over {98\sqrt{105 }\pi ^{{{3}\over {2}}}}}-{{3\sqrt{3}\sqrt{5}\sqrt{6} H_1^{-1} H_1^0 H_2^{-1} H_2^2 }\over {245\pi ^{{{3}\over {2}}}}} \\&+{{54\sqrt{2}\sqrt{5} H_1^{-1} H_1^0 H_2^{-1} H_2^2 }\over {245\pi ^{{{3}\over {2}}}}}+{{135\sqrt{21} (H_0^0)^2 H_1^{-1} H_1^1 H_2^{-2} H_2^2 }\over {98\sqrt{105}\pi ^{{{5}\over {2}}}}} \\&+{{891\sqrt{5}(H_0^0)^2 H_1^{-1} H_1^1 H_2^{-2} H_2^2 }\over {196\pi ^{{{5}\over {2}}}}}-{{45\sqrt{21} H_0^0 H_1^{-1} H_1^1 H_2^{-2} H_2^2 }\over {49\sqrt{105}\pi ^2}} \\&-{{297 \sqrt{5}H_0^0 H_1^{-1} H_1^1 H_2^{-2} H_2^2 }\over {98\pi ^2}}+{{18\sqrt{21} H_1^{-1} H_1^1 H_2^{-2} H_2^2 }\over {49\sqrt{105}\pi ^{{{3 }\over {2}}}}} \end{aligned}$$
$$\begin{aligned}&+{{297\sqrt{5} H_1^{-1} H_1^1 H_2^{-2} H_2^2 }\over {245\pi ^{ {{3}\over {2}}}}}+{{135\sqrt{21}(H_0^0)^2 (H_1^0)^2 H_2^{-2} H_2^2 }\over {98 \sqrt{105}\pi ^{{{5}\over {2}}}}} \\&-{{27\sqrt{5} (H_0^0)^2 (H_1^0)^2 H_2^{-2} H_2^2 }\over {98\pi ^{{{5}\over {2}}}}}-{{45\sqrt{21} H_0^0 (H_1^0)^2 H_2^{-2} H_2^2 }\over {49\sqrt{105}\pi ^2}} \\&+{{9\sqrt{5} H_0^0 (H_1^0)^2 H_2^{-2} H_2^2 }\over {49\pi ^2}}+{{18\sqrt{21} (H_1^0)^2 H_2^{-2} H_2^2 }\over {49\sqrt{105}\pi ^{ {{3}\over {2}}}}} \\&-{{18\sqrt{5} (H_1^0)^2 H_2^{-2} H_2^2 }\over {245\pi ^{{{3}\over {2}}}}}-{{15 \sqrt{5} (H_0^0)^4 H_2^{-2} H_2^2 }\over {56\pi ^{{{5}\over {2}}}}} \\&+{{5\sqrt{5} (H_0^0)^3 H_2^{-2} H_2^2 }\over {14\pi ^2}}-{{3\sqrt{5}(H_0^0)^2 H_2^{-2} H_2^2 }\over {7\pi ^{{{3}\over {2}}}}} \\&+{{3\sqrt{5} H_0^0 H_2^{-2} H_2^2 }\over {7\pi }}-{{2\sqrt{5} H_2^{-2} H_2^2 }\over {7 \sqrt{\pi }}} \\&+{{45\sqrt{6}H_0^0 (H_1^{-1})^3 H_1^1 H_2^2 }\over {28\pi ^{{{5 }\over {2}}}}}-{{15\sqrt{6} (H_1^{-1})^3 H_1^1 H_2^2 }\over {28\pi ^2}} \\&-{{9\sqrt{10} \sqrt{15}H_0^0 (H_1^{-1})^2 (H_1^0)^2 H_2^2 }\over {784\pi ^{{{5}\over {2}}}}}\\&+{{3 \sqrt{3}\sqrt{5}\sqrt{6}\sqrt{15}H_0^0 (H_1^{-1})^2 (H_1^0)^2 H_2^2 }\over {784\pi ^{{{5}\over {2}}}}} \\&+{{27\sqrt{2}\sqrt{5}\sqrt{6} \sqrt{10}H_0^0 (H_1^{-1})^2 (H_1^0)^2 H_2^2 }\over {1960\pi ^{{{5}\over {2}}}}}\\&-{{9\sqrt{3}\sqrt{5}\sqrt{10}H_0^0 (H_1^{-1})^2 (H_1^0)^2 H_2^2 }\over {560 \pi ^{{{5}\over {2}}}}} \\&-{{1017\sqrt{6}H_0^0 (H_1^{-1})^2 (H_1^0)^2 H_2^2 }\over {3920\pi ^{{{5}\over {2}}}}}+{{99\sqrt{2}\sqrt{3} H_0^0 (H_1^{-1})^2 (H_1^0)^2 H_2^2 }\over {490\pi ^{{{5}\over {2}}}}} \\&+{{3\sqrt{10}\sqrt{15 } (H_1^{-1})^2 (H_1^0)^2 H_2^2 }\over {784\pi ^2}}-{{\sqrt{3}\sqrt{5}\sqrt{6}\sqrt{15} (H_1^{-1})^2 (H_1^0)^2 H_2^2 }\over {784\pi ^2}} \\&-{{9\sqrt{2}\sqrt{5}\sqrt{6}\sqrt{10} (H_1^{-1})^2 (H_1^0)^2 H_2^2 }\over {1960\pi ^2}}+{{3\sqrt{3}\sqrt{5}\sqrt{10} (H_1^{-1})^2 (H_1^0)^2 H_2^2 }\over {560 \pi ^2}} \\&+{{339\sqrt{6} (H_1^{-1})^2 (H_1^0)^2 H_2^2 }\over {3920\pi ^2}}-{{33\sqrt{2} \sqrt{3} (H_1^{-1})^2 (H_1^0)^2 H_2^2 }\over {490\pi ^2}} \\&-{{15\sqrt{6} (H_0^0)^3 (H_1^{-1})^2 H_2^2 }\over {28\pi ^{{{5}\over {2 }}}}}+{{15\sqrt{6}(H_0^0)^2 (H_1^{-1})^2 H_2^2 }\over {28\pi ^2}} \end{aligned}$$
$$\begin{aligned}&-{{3\sqrt{6} H_0^0 (H_1^{-1})^2 H_2^2 }\over {7\pi ^{ {{3}\over {2}}}}}+{{3\sqrt{6} (H_1^{-1})^2 H_2^2 }\over {14\pi }} \\&-{{5\sqrt{5}\sqrt{30} (H_0^0)^3 H_2^{-2} (H_2^1)^2 }\over {196\pi ^{{{5}\over {2}}}}}+{{5\sqrt{10}\sqrt{15} (H_0^0)^3 H_2^{-2} (H_2^1)^2 }\over {196\pi ^{{{5 }\over {2}}}}}\\&+{{5\sqrt{5}\sqrt{30}(H_0^0)^2 H_2^{-2} (H_2^1)^2 }\over {196\pi ^2}}-{{5 \sqrt{10}\sqrt{15}(H_0^0)^2 H_2^{-2} (H_2^1)^2 }\over {196\pi ^2}} \\&-{{\sqrt{5}\sqrt{30}H_0^0 H_2^{-2} (H_2^1)^2 }\over {49\pi ^{{{3}\over {2}}}}}+{{\sqrt{10}\sqrt{15} H_0^0 H_2^{-2} (H_2^1)^2 }\over {49\pi ^{ {{3}\over {2}}}}} \\&+{{\sqrt{5}\sqrt{30} H_2^{-2} (H_2^1)^2 }\over {98\pi }}-{{\sqrt{10}\sqrt{15} H_2^{-2} (H_2^1)^2 }\over {98\pi }} \\&+{{45\sqrt{6} \sqrt{10}\sqrt{15}\sqrt{21}(H_0^0)^2 (H_1^{-1})^2 (H_2^1)^2 }\over {392\sqrt{105}\pi ^{{{5 }\over {2}}}}}\\&-{{135\sqrt{5}(H_0^0)^2 (H_1^{-1})^2 (H_2^1)^2 }\over {196\pi ^{{{5}\over {2}}}}} \\&-{{15 \sqrt{6}\sqrt{10}\sqrt{15}\sqrt{21}H_0^0 (H_1^{-1})^2 (H_2^1)^2 }\over {196\sqrt{105} \pi ^2}}+{{45\sqrt{5}H_0^0 (H_1^{-1})^2 (H_2^1)^2 }\over {98\pi ^2}} \\&+{{3\sqrt{6}\sqrt{10} \sqrt{15}\sqrt{21} (H_1^{-1})^2 (H_2^1)^2 }\over {98\sqrt{105}\pi ^{{{3}\over {2}}}}}-{{9\sqrt{5} (H_1^{-1})^2 (H_2^1)^2 }\over {49\pi ^{{{3}\over {2 }}}}} \\&-{{75 (H_0^0)^3 H_2^{-1} H_2^0 H_2^1 }\over {28\pi ^{{{5}\over {2}}}}}+{{75 (H_0^0)^2 H_2^{-1} H_2^0 H_2^1 }\over {28\pi ^2}} \\&-{{15H_0^0 H_2^{-1} H_2^0 H_2^1 }\over {7 \pi ^{{{3}\over {2}}}}}+{{15 H_2^{-1} H_2^0 H_2^1 }\over {14\pi }} \\&-{{45\sqrt{6}\sqrt{15 }\sqrt{21}\sqrt{30}(H_0^0)^2 H_1^{-1} H_1^0 H_2^0 H_2^1 }\over {392\sqrt{105}\pi ^{{{5}\over {2}}}}}\\&-{{135\sqrt{10} \sqrt{21}\sqrt{30}(H_0^0)^2 H_1^{-1} H_1^0 H_2^0 H_2^1 }\over {392 \sqrt{105}\pi ^{{{5}\over {2}}}}} \\&-{{27\sqrt{2}\sqrt{5}\sqrt{6 }(H_0^0)^2 H_1^{-1} H_1^0 H_2^0 H_2^1 }\over {196\pi ^{{{5 }\over {2}}}}}\\&+{{9\sqrt{3}\sqrt{5}(H_0^0)^2 H_1^{-1} H_1^0 H_2^0 H_2^1 }\over {196\pi ^{{{5}\over {2}}}}} \\&+{{15\sqrt{6} \sqrt{15}\sqrt{21}\sqrt{30}H_0^0 H_1^{-1} H_1^0 H_2^0 H_2^1 }\over {196\sqrt{105}\pi ^2}}\\&+{{45\sqrt{10}\sqrt{21} \sqrt{30}H_0^0 H_1^{-1} H_1^0 H_2^0 H_2^1 }\over {196\sqrt{105 }\pi ^2}} \\&+{{9\sqrt{2}\sqrt{5}\sqrt{6}H_0^0 H_1^{-1} H_1^0 H_2^0 H_2^1 }\over {98\pi ^2}}-{{3\sqrt{3}\sqrt{5}H_0^0 H_1^{-1} H_1^0 H_2^0 H_2^1 }\over {98\pi ^2}} \\&-{{3 \sqrt{6}\sqrt{15}\sqrt{21}\sqrt{30} H_1^{-1} H_1^0 H_2^0 H_2^1 }\over {98 \sqrt{105}\pi ^{{{3}\over {2}}}}}\\&-{{9\sqrt{10}\sqrt{21} \sqrt{30} H_1^{-1} H_1^0 H_2^0 H_2^1 }\over {98\sqrt{105}\pi ^{{{3}\over {2 }}}}} \\&-{{9\sqrt{2}\sqrt{5}\sqrt{6} H_1^{-1} H_1^0 H_2^0 H_2^1 }\over {245 \pi ^{{{3}\over {2}}}}}+{{3\sqrt{3}\sqrt{5} H_1^{-1} H_1^0 H_2^0 H_2^1 }\over {245\pi ^{{{3}\over {2}}}}} \end{aligned}$$
$$\begin{aligned}&+{{270\sqrt{21} (H_0^0)^2 H_1^{-1} H_1^1 H_2^{-1} H_2^1 }\over {49\sqrt{105}\pi ^{{{5}\over {2 }}}}}-{{54\sqrt{5}(H_0^0)^2 H_1^{-1} H_1^1 H_2^{-1} H_2^1 }\over {49 \pi ^{{{5}\over {2}}}}} \\&-{{180\sqrt{21}H_0^0 H_1^{-1} H_1^1 H_2^{-1} H_2^1 }\over {49\sqrt{105}\pi ^2}}+{{36\sqrt{5}H_0^0 H_1^{-1} H_1^1 H_2^{-1} H_2^1 }\over {49\pi ^2}}\\&+{{72 \sqrt{21} H_1^{-1} H_1^1 H_2^{-1} H_2^1 }\over {49\sqrt{105}\pi ^{{{3}\over {2 }}}}}-{{72\sqrt{5} H_1^{-1} H_1^1 H_2^{-1} H_2^1 }\over {245\pi ^{{{3}\over {2 }}}}} \\&+{{270\sqrt{21}(H_0^0)^2 (H_1^0)^2 H_2^{-1} H_2^1 }\over {49\sqrt{105} \pi ^{{{5}\over {2}}}}}-{{1377\sqrt{5}(H_0^0)^2 (H_1^0)^2 H_2^{-1} H_2^1 }\over {392 \pi ^{{{5}\over {2}}}}} \\&-{{180\sqrt{21}H_0^0 (H_1^0)^2 H_2^{-1} H_2^1 }\over {49 \sqrt{105}\pi ^2}}+{{459\sqrt{5}H_0^0 (H_1^0)^2 H_2^{-1} H_2^1 }\over {196 \pi ^2}} \\&+{{72\sqrt{21} (H_1^0)^2 H_2^{-1} H_2^1 }\over {49\sqrt{105}\pi ^{{{3}\over {2 }}}}}-{{459\sqrt{5} (H_1^0)^2 H_2^{-1} H_2^1 }\over {490\pi ^{{{3}\over {2}}}}} \\&-{{15\sqrt{5} (H_0^0)^4 H_2^{-1} H_2^1 }\over {112\pi ^{{{5}\over {2}}}}}+{{5\sqrt{5} (H_0^0)^3 H_2^{-1} H_2^1 }\over {28\pi ^2}} \\&-{{3\sqrt{5}(H_0^0)^2 H_2^{-1} H_2^1 }\over {14\pi ^{{{3}\over {2}}}}}+{{3\sqrt{5} H_0^0 H_2^{-1} H_2^1 }\over {14\pi }} \\&-{{\sqrt{5} H_2^{-1} H_2^1 }\over {7 \sqrt{\pi }}}-{{45\sqrt{5}\sqrt{6}\sqrt{15}\sqrt{21} (H_0^0)^2 H_1^0 H_1^1 H_2^{-2} H_2^1 }\over {392\sqrt{105}\pi ^{{{5}\over {2}}}}} \\&-{{135\sqrt{5}\sqrt{10}\sqrt{21} (H_0^0)^2 H_1^0 H_1^1 H_2^{-2} H_2^1 }\over {392\sqrt{105}\pi ^{{{5}\over {2 }}}}} \end{aligned}$$
$$\begin{aligned}&-{{9\sqrt{3}\sqrt{5}\sqrt{6}(H_0^0)^2 H_1^0 H_1^1 H_2^{-2} H_2^1 }\over {196\pi ^{{{5}\over {2}}}}} \\&+{{81\sqrt{2} \sqrt{5}(H_0^0)^2 H_1^0 H_1^1 H_2^{-2} H_2^1 }\over {98\pi ^{{{5 }\over {2}}}}}\\&+{{15\sqrt{5}\sqrt{6}\sqrt{15}\sqrt{21}H_0^0 H_1^0 H_1^1 H_2^{-2} H_2^1 }\over {196\sqrt{105}\pi ^2 }} \\&+{{45\sqrt{5}\sqrt{10}\sqrt{21}H_0^0 H_1^0 H_1^1 H_2^{-2} H_2^1 }\over {196\sqrt{105}\pi ^2}}\\&+{{3\sqrt{3} \sqrt{5}\sqrt{6}H_0^0 H_1^0 H_1^1 H_2^{-2} H_2^1 }\over {98 \pi ^2}} \\&-{{27\sqrt{2}\sqrt{5}H_0^0 H_1^0 H_1^1 H_2^{-2} H_2^1 }\over {49\pi ^2}}-{{3\sqrt{5}\sqrt{6}\sqrt{15}\sqrt{21 } H_1^0 H_1^1 H_2^{-2} H_2^1 }\over {98\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&-{{9 \sqrt{5}\sqrt{10}\sqrt{21} H_1^0 H_1^1 H_2^{-2} H_2^1 }\over {98\sqrt{105 }\pi ^{{{3}\over {2}}}}}-{{3\sqrt{3}\sqrt{5}\sqrt{6} H_1^0 H_1^1 H_2^{-2} H_2^1 }\over {245\pi ^{{{3}\over {2}}}}} \\&+{{54\sqrt{2}\sqrt{5} H_1^0 H_1^1 H_2^{-2} H_2^1 }\over {245\pi ^{{{3}\over {2}}}}}-{{3\sqrt{3} \sqrt{6}\sqrt{10}\sqrt{15}H_0^0 (H_1^{-1})^2 H_1^0 H_1^1 H_2^1 }\over {784\pi ^{{{5}\over {2}}}}} \\&-{{9\sqrt{5}\sqrt{6} \sqrt{10}H_0^0 (H_1^{-1})^2 H_1^0 H_1^1 H_2^1 }\over {392\pi ^{{{5 }\over {2}}}}}+{{351\sqrt{2}\sqrt{6}H_0^0 (H_1^{-1})^2 H_1^0 H_1^1 H_2^1 }\over {392\pi ^{{{5}\over {2}}}}} \\&-{{81\sqrt{3} H_0^0 (H_1^{-1})^2 H_1^0 H_1^1 H_2^1 }\over {56\pi ^{{{5}\over {2}} }}}+{{\sqrt{3}\sqrt{6}\sqrt{10}\sqrt{15} (H_1^{-1})^2 H_1^0 H_1^1 H_2^1 }\over {784\pi ^2}} \\&+{{3\sqrt{5}\sqrt{6}\sqrt{10} (H_1^{-1})^2 H_1^0 H_1^1 H_2^1 }\over {392\pi ^2}}-{{117\sqrt{2}\sqrt{6} (H_1^{-1})^2 H_1^0 H_1^1 H_2^1 }\over {392\pi ^2}}\\&+{{27\sqrt{3} (H_1^{-1})^2 H_1^0 H_1^1 H_2^1 }\over {56\pi ^2}}-{{9\sqrt{2}\sqrt{10}\sqrt{15}H_0^0 H_1^{-1} (H_1^0)^3 H_2^1 }\over {392\pi ^{{{5}\over {2}}}}} \\&-{{27\sqrt{2} \sqrt{6}H_0^0 H_1^{-1} (H_1^0)^3 H_2^1 }\over {56\pi ^{{{5}\over {2}}}}}-{{81 \sqrt{3}H_0^0 H_1^{-1} (H_1^0)^3 H_2^1 }\over {196\pi ^{{{5}\over {2}}}}} \\&+{{3 \sqrt{2}\sqrt{10}\sqrt{15} H_1^{-1} (H_1^0)^3 H_2^1 }\over {392\pi ^2}}+{{9\sqrt{2} \sqrt{6} H_1^{-1} (H_1^0)^3 H_2^1 }\over {56\pi ^2}} \\&+{{27\sqrt{3} H_1^{-1} (H_1^0)^3 H_2^1 }\over {196\pi ^2}}-{{9 \sqrt{2}\sqrt{6} (H_0^0)^3 H_1^{-1} H_1^0 H_2^1 }\over {28\pi ^{{{5}\over {2}} }}} \\&+{{3\sqrt{3} (H_0^0)^3 H_1^{-1} H_1^0 H_2^1 }\over {28\pi ^{{{5}\over {2}} }}}+{{9\sqrt{2}\sqrt{6}(H_0^0)^2 H_1^{-1} H_1^0 H_2^1 }\over {28\pi ^2}} \\&-{{3\sqrt{3}(H_0^0)^2 H_1^{-1} H_1^0 H_2^1 }\over {28\pi ^2}}-{{9\sqrt{2} \sqrt{6}H_0^0 H_1^{-1} H_1^0 H_2^1 }\over {35\pi ^{{{3}\over {2}}}}} \end{aligned}$$
$$\begin{aligned}&+{{3 \sqrt{3}H_0^0 H_1^{-1} H_1^0 H_2^1 }\over {35\pi ^{{{3}\over {2}}}}}+{{9 \sqrt{2}\sqrt{6} H_1^{-1} H_1^0 H_2^1 }\over {70\pi }} \\&-{{3\sqrt{3} H_1^{-1} H_1^0 H_2^1 }\over {70\pi }}+{{75 (H_0^0)^3 (H_3^0)^3 }\over {56\pi ^{{{5 }\over {2}}}}} \\&-{{75(H_0^0)^2 (H_3^0)^3 }\over {56\pi ^2}}+{{15H_0^0 (H_3^0)^3 }\over {14\pi ^{{{3}\over {2}}}}} \\&-{{15 (H_3^0)^3 }\over {28 \pi }}+{{405\sqrt{21}(H_0^0)^2 H_1^{-1} H_1^1 (H_2^0)^2 }\over {98\sqrt{105 }\pi ^{{{5}\over {2}}}}} \\&-{{9\sqrt{5}(H_0^0)^2 H_1^{-1} H_1^1 (H_2^0)^2 }\over {392\pi ^{{{5}\over {2}}}}}-{{135\sqrt{21} H_0^0 H_1^{-1} H_1^1 (H_2^0)^2 }\over {49\sqrt{105}\pi ^2}} \\&+{{3\sqrt{5} H_0^0 H_1^{-1} H_1^1 (H_2^0)^2 }\over {196\pi ^2}}+{{54\sqrt{21} H_1^{-1} H_1^1 (H_2^0)^2 }\over {49\sqrt{105}\pi ^{{{3}\over {2}}}}} \\&-{{3\sqrt{5} H_1^{-1} H_1^1 (H_2^0)^2 }\over {490\pi ^{{{3}\over {2}}}}}+{{405 \sqrt{21}(H_0^0)^2 (H_1^0)^2 (H_2^0)^2 }\over {98\sqrt{105}\pi ^{{{5}\over {2}}}}} \\&+{{117 \sqrt{5}(H_0^0)^2 (H_1^0)^2 (H_2^0)^2 }\over {49\pi ^{{{5}\over {2}}}}}-{{135\sqrt{21}H_0^0 (H_1^0)^2 (H_2^0)^2 }\over {49\sqrt{105}\pi ^2}} \\&-{{78\sqrt{5}H_0^0 (H_1^0)^2 (H_2^0)^2 }\over {49\pi ^2}}+{{54 \sqrt{21} (H_1^0)^2 (H_2^0)^2 }\over {49 \sqrt{105}\pi ^{{{3}\over {2}}}}} +{{156\sqrt{5} (H_1^0)^2 (H_2^0)^2 }\over {245\pi ^{{{3}\over {2}}}}}\\&+{{15 \sqrt{5} (H_0^0)^4 (H_2^0)^2 }\over {112 \pi ^{{{5}\over {2}}}}} -{{5\sqrt{5} (H_0^0)^3 (H_2^0)^2 }\over {28\pi ^2}}+{{3\sqrt{5} (H_0^0)^2 (H_2^0)^2 }\over {14\pi ^{{{3}\over {2}}}}} \\&-{{3 \sqrt{5}H_0^0 (H_2^0)^2 }\over {14\pi }}-{{45 \sqrt{6}\sqrt{15}\sqrt{21}\sqrt{30}(H_0^0)^2 H_1^0 H_1^1 H_2^{-1} H_2^0 }\over {392\sqrt{105}\pi ^{{{5}\over {2}}}}}\\&+{{\sqrt{5} (H_2^0)^2 }\over {7\sqrt{\pi }}}-{{135 \sqrt{10}\sqrt{21}\sqrt{30}(H_0^0)^2 H_1^0 H_1^1 H_2^{-1} H_2^0 }\over {392\sqrt{105}\pi ^{{{5}\over {2}}}}} \\&-{{27\sqrt{2} \sqrt{5}\sqrt{6}(H_0^0)^2 H_1^0 H_1^1 H_2^{-1} H_2^0 }\over {196 \pi ^{{{5}\over {2}}}}} \end{aligned}$$
$$\begin{aligned}&+{{9\sqrt{3}\sqrt{5} (H_0^0)^2 H_1^0 H_1^1 H_2^{-1} H_2^0 }\over {196\pi ^{{{5}\over {2}}}}} \\&+{{15 \sqrt{6}\sqrt{15}\sqrt{21}\sqrt{30}H_0^0 H_1^0 H_1^1 H_2^{-1} H_2^0 }\over {196\sqrt{105}\pi ^2}}\\&+{{45\sqrt{10} \sqrt{21}\sqrt{30}H_0^0 H_1^0 H_1^1 H_2^{-1} H_2^0 }\over {196 \sqrt{105}\pi ^2}} \\&+{{9\sqrt{2}\sqrt{5}\sqrt{6} H_0^0 H_1^0 H_1^1 H_2^{-1} H_2^0 }\over {98\pi ^2}}-{{3\sqrt{3}\sqrt{5 }H_0^0 H_1^0 H_1^1 H_2^{-1} H_2^0 }\over {98\pi ^2}} \\&-{{3 \sqrt{6}\sqrt{15}\sqrt{21}\sqrt{30} H_1^0 H_1^1 H_2^{-1} H_2^0 }\over {98 \sqrt{105}\pi ^{{{3}\over {2}}}}}\\&-{{9\sqrt{10}\sqrt{21} \sqrt{30} H_1^0 H_1^1 H_2^{-1} H_2^0 }\over {98\sqrt{105}\pi ^{{{3}\over {2 }}}}} \\&-{{9\sqrt{2}\sqrt{5}\sqrt{6} H_1^0 H_1^1 H_2^{-1} H_2^0 }\over {245 \pi ^{{{3}\over {2}}}}}+{{3\sqrt{3}\sqrt{5} H_1^0 H_1^1 H_2^{-1} H_2^0 }\over {245\pi ^{{{3}\over {2}}}}} \\&+{{675\sqrt{6}\sqrt{21} (H_0^0)^2 (H_1^1)^2 H_2^{-2} H_2^0 }\over {392\sqrt{105}\pi ^{{{5}\over {2}}}}}+{{45 \sqrt{5}\sqrt{6}(H_0^0)^2 (H_1^1)^2 H_2^{-2} H_2^0 }\over {98\pi ^{{{5}\over {2 }}}}} \\&-{{225\sqrt{6}\sqrt{21}H_0^0 (H_1^1)^2 H_2^{-2} H_2^0 }\over {196\sqrt{105 }\pi ^2}}-{{15\sqrt{5}\sqrt{6}H_0^0 (H_1^1)^2 H_2^{-2} H_2^0 }\over {49\pi ^2}} \\&+{{45\sqrt{6}\sqrt{21} (H_1^1)^2 H_2^{-2} H_2^0 }\over {98\sqrt{105}\pi ^{{{3}\over {2 }}}}}+{{6\sqrt{5}\sqrt{6} (H_1^1)^2 H_2^{-2} H_2^0 }\over {49\pi ^{{{3}\over {2}}}}} \\&+{{135 H_0^0 (H_1^{-1})^2 (H_1^1)^2 H_2^0 }\over {28\pi ^{{{5}\over {2}}}}}-{{45 (H_1^{-1})^2 (H_1^1)^2 H_2^0 }\over {28 \pi ^2}} \\&-{{9\sqrt{6}\sqrt{10}\sqrt{15}H_0^0 H_1^{-1} (H_1^0)^2 H_1^1 H_2^0 }\over {196\pi ^{{{5}\over {2}}}}}\\&+{{9\sqrt{2} \sqrt{3}\sqrt{6}H_0^0 H_1^{-1} (H_1^0)^2 H_1^1 H_2^0 }\over {245 \pi ^{{{5}\over {2}}}}} \\&-{{513H_0^0 H_1^{-1} (H_1^0)^2 H_1^1 H_2^0 }\over {140\pi ^{{{5}\over {2}}}}}+{{3\sqrt{6}\sqrt{10} \sqrt{15} H_1^{-1} (H_1^0)^2 H_1^1 H_2^0 }\over {196\pi ^2}} \\&-{{3\sqrt{2} \sqrt{3}\sqrt{6} H_1^{-1} (H_1^0)^2 H_1^1 H_2^0 }\over {245\pi ^2}}+{{171 H_1^{-1} (H_1^0)^2 H_1^1 H_2^0 }\over {140\pi ^2}} \\&-{{75 (H_0^0)^3 H_1^{-1} H_1^1 H_2^0 }\over {28 \pi ^{{{5}\over {2}}}}}+{{75(H_0^0)^2 H_1^{-1} H_1^1 H_2^0 }\over {28\pi ^2}}\\&-{{15H_0^0 H_1^{-1} H_1^1 H_2^0 }\over {7\pi ^{{{3}\over {2}}}}}+{{15 H_1^{-1} H_1^1 H_2^0 }\over {14\pi }} +{{405H_0^0 (H_1^0)^4 H_2^0 }\over {112\pi ^{{{5}\over {2}}}}}\\&-{{135 (H_1^0)^4 H_2^0 }\over {112\pi ^2}}+{{165 (H_0^0)^3 (H_1^0)^2 H_2^0 }\over {56\pi ^{ {{5}\over {2}}}}}-{{165(H_0^0)^2 (H_1^0)^2 H_2^0 }\over {56\pi ^2}} \end{aligned}$$
$$\begin{aligned}&+{{33H_0^0 (H_1^0)^2 H_2^0 }\over {14\pi ^{{{3}\over {2 }}}}}-{{33 (H_1^0)^2 H_2^0 }\over {28\pi }} +{{3 (H_0^0)^5 H_2^0 }\over {16\pi ^{{{5 }\over {2}}}}}\\&-{{5 (H_0^0)^4 H_2^0 }\over {16 \pi ^2}}+{{ (H_0^0)^3 H_2^0 }\over {2\pi ^{{{3}\over {2}}}}}-{{3(H_0^0)^2 H_2^0 }\over {4\pi }} \\&+{{H_0^0 H_2^0 }\over { \sqrt{\pi }}}+{{45\sqrt{6}\sqrt{10}\sqrt{15}\sqrt{21} (H_0^0)^2 (H_1^1)^2 (H_2^{-1})^2 }\over {392\sqrt{105}\pi ^{{{5}\over {2}}}}} \\&-{{135\sqrt{5} (H_0^0)^2 (H_1^1)^2 (H_2^{-1})^2 }\over {196\pi ^{{{5}\over {2}}}}}-{{15\sqrt{6}\sqrt{10}\sqrt{15 }\sqrt{21}H_0^0 (H_1^1)^2 (H_2^{-1})^2 }\over {196\sqrt{105}\pi ^2}} \\&+{{45\sqrt{5} H_0^0 (H_1^1)^2 (H_2^{-1})^2 }\over {98 \pi ^2}}+{{3\sqrt{6}\sqrt{10}\sqrt{15}\sqrt{21} (H_1^1)^2 (H_2^{-1})^2 }\over {98\sqrt{105}\pi ^{{{3 }\over {2}}}}} \\&-{{9\sqrt{5} (H_1^1)^2 (H_2^{-1})^2 }\over {49\pi ^{{{3}\over {2}}}}}-{{3\sqrt{3}\sqrt{6} \sqrt{10}\sqrt{15}H_0^0 H_1^{-1} H_1^0 (H_1^1)^2 H_2^{-1} }\over {784\pi ^{{{5}\over {2}}}}} \\&-{{9\sqrt{5}\sqrt{6}\sqrt{10} H_0^0 H_1^{-1} H_1^0 (H_1^1)^2 H_2^{-1} }\over {392\pi ^{{{5}\over {2 }}}}}\\&+{{351\sqrt{2}\sqrt{6}H_0^0 H_1^{-1} H_1^0 (H_1^1)^2 H_2^{-1} }\over {392\pi ^{{{5}\over {2}}}}} \\&-{{81\sqrt{3} H_0^0 H_1^{-1} H_1^0 (H_1^1)^2 H_2^{-1} }\over {56\pi ^{{{5}\over {2}}}}}+{{ \sqrt{3}\sqrt{6}\sqrt{10}\sqrt{15} H_1^{-1} H_1^0 (H_1^1)^2 H_2^{-1} }\over {784\pi ^2}} \\&+{{3\sqrt{5}\sqrt{6}\sqrt{10} H_1^{-1} H_1^0 (H_1^1)^2 H_2^{-1} }\over {392\pi ^2}}-{{117\sqrt{2}\sqrt{6} H_1^{-1} H_1^0 (H_1^1)^2 H_2^{-1} }\over {392\pi ^2}} \\&+{{27\sqrt{3} H_1^{-1} H_1^0 (H_1^1)^2 H_2^{-1} }\over {56\pi ^2}}-{{9\sqrt{2}\sqrt{10}\sqrt{15} H_0^0 (H_1^0)^3 H_1^1 H_2^{-1} }\over {392\pi ^{{{5}\over {2}}}}} \\&-{{27\sqrt{2}\sqrt{6}H_0^0 (H_1^0)^3 H_1^1 H_2^{-1} }\over {56\pi ^{{{5}\over {2}}}}}-{{81\sqrt{3} H_0^0 (H_1^0)^3 H_1^1 H_2^{-1} }\over {196\pi ^{{{5}\over {2}}}}} \\&+{{3\sqrt{2} \sqrt{10}\sqrt{15} (H_1^0)^3 H_1^1 H_2^{-1} }\over {392\pi ^2}}+{{9\sqrt{2}\sqrt{6} (H_1^0)^3 H_1^1 H_2^{-1} }\over {56 \pi ^2}}\\&+{{27\sqrt{3} (H_1^0)^3 H_1^1 H_2^{-1} }\over {196\pi ^2}}-{{9\sqrt{2}\sqrt{6} (H_0^0)^3 H_1^0 H_1^1 H_2^{-1} }\over {28\pi ^{{{5}\over {2}}}}} \\&+{{3\sqrt{3} (H_0^0)^3 H_1^0 H_1^1 H_2^{-1} }\over {28\pi ^{{{5}\over {2}}}}}+{{9\sqrt{2} \sqrt{6}(H_0^0)^2 H_1^0 H_1^1 H_2^{-1} }\over {28\pi ^2}} \\&-{{3\sqrt{3} (H_0^0)^2 H_1^0 H_1^1 H_2^{-1} }\over {28\pi ^2}}-{{9\sqrt{2}\sqrt{6}H_0^0 H_1^0 H_1^1 H_2^{-1} }\over {35\pi ^{{{3}\over {2}}}}} \\&+{{3\sqrt{3}H_0^0 H_1^0 H_1^1 H_2^{-1} }\over {35\pi ^{{{3}\over {2}}}}}+{{9\sqrt{2} \sqrt{6} H_1^0 H_1^1 H_2^{-1} }\over {70\pi }} \end{aligned}$$
$$\begin{aligned}&-{{3\sqrt{3} H_1^0 H_1^1 H_2^{-1} }\over {70\pi }}+{{45\sqrt{6}H_0^0 H_1^{-1} (H_1^1)^3 H_2^{-2} }\over {28\pi ^{{{5}\over {2}}}}} \\&-{{15\sqrt{6} H_1^{-1} (H_1^1)^3 H_2^{-2} }\over {28\pi ^2}}-{{9\sqrt{10}\sqrt{15}H_0^0 (H_1^0)^2 (H_1^1)^2 H_2^{-2} }\over {784\pi ^{{{5}\over {2}}}}} \\&+{{3\sqrt{3}\sqrt{5}\sqrt{6} \sqrt{15}H_0^0 (H_1^0)^2 (H_1^1)^2 H_2^{-2} }\over {784\pi ^{{{5}\over {2}}}}}\\&+{{27\sqrt{2}\sqrt{5}\sqrt{6}\sqrt{10}H_0^0 (H_1^0)^2 (H_1^1)^2 H_2^{-2} }\over {1960\pi ^{{{5}\over {2}}}}} \\&-{{9\sqrt{3}\sqrt{5}\sqrt{10 }H_0^0 (H_1^0)^2 (H_1^1)^2 H_2^{-2} }\over {560\pi ^{{{5}\over {2}}}}}-{{1017 \sqrt{6}H_0^0 (H_1^0)^2 (H_1^1)^2 H_2^{-2} }\over {3920\pi ^{{{5}\over {2}}}}} \\&+{{99 \sqrt{2}\sqrt{3}H_0^0 (H_1^0)^2 (H_1^1)^2 H_2^{-2} }\over {490\pi ^{{{5}\over {2 }}}}}+{{3\sqrt{10}\sqrt{15} (H_1^0)^2 (H_1^1)^2 H_2^{-2} }\over {784\pi ^2}} \\&-{{\sqrt{3} \sqrt{5}\sqrt{6}\sqrt{15} (H_1^0)^2 (H_1^1)^2 H_2^{-2} }\over {784\pi ^2}}-{{9\sqrt{2} \sqrt{5}\sqrt{6}\sqrt{10} (H_1^0)^2 (H_1^1)^2 H_2^{-2} }\over {1960\pi ^2}} \\&+{{3\sqrt{3} \sqrt{5}\sqrt{10} (H_1^0)^2 (H_1^1)^2 H_2^{-2} }\over {560\pi ^2}}+{{339\sqrt{6} (H_1^0)^2 (H_1^1)^2 H_2^{-2} }\over {3920 \pi ^2}} \\&-{{33\sqrt{2}\sqrt{3} (H_1^0)^2 (H_1^1)^2 H_2^{-2} }\over {490\pi ^2}}-{{15\sqrt{6} (H_0^0)^3 (H_1^1)^2 H_2^{-2} }\over {28\pi ^{{{5}\over {2}}}}} \\&+{{15\sqrt{6} (H_0^0)^2 (H_1^1)^2 H_2^{-2} }\over {28\pi ^2 }}-{{3\sqrt{6}H_0^0 (H_1^1)^2 H_2^{-2} }\over {7\pi ^{{{3}\over {2}}}}} \\&+{{3\sqrt{6} (H_1^1)^2 H_2^{-2} }\over {14\pi }}+{{9\sqrt{5 } (H_1^{-1})^3 (H_1^1)^3 }\over {28\pi ^{{{5 }\over {2}}}}} \\&-{{3\sqrt{5}\sqrt{6}\sqrt{10}\sqrt{15} (H_1^{-1})^2 (H_1^0)^2 (H_1^1)^2 }\over {2800\pi ^{{{5}\over {2}}}}}\\&+{{3\sqrt{3}\sqrt{15} (H_1^{-1})^2 (H_1^0)^2 (H_1^1)^2 }\over {1960\pi ^{{{5}\over {2}}}}} \\&-{{81\sqrt{3}\sqrt{6}\sqrt{10 } (H_1^{-1})^2 (H_1^0)^2 (H_1^1)^2 }\over {19600\pi ^{{{5}\over {2}}}}}\\&+{{27\sqrt{2}\sqrt{10} (H_1^{-1})^2 (H_1^0)^2 (H_1^1)^2 }\over {4900\pi ^{{{5}\over {2}}}}}\\&+{{873\sqrt{2}\sqrt{3} \sqrt{5}\sqrt{6} (H_1^{-1})^2 (H_1^0)^2 (H_1^1)^2 }\over {24500\pi ^{{{5}\over {2}}}}}\\&-{{8451 \sqrt{5} (H_1^{-1})^2 (H_1^0)^2 (H_1^1)^2 }\over {49000\pi ^{{{5}\over {2}}}}} \\&-{{27\sqrt{5} (H_0^0)^2 (H_1^{-1})^2 (H_1^1)^2 }\over {28\pi ^{{{5}\over {2}}}}}+{{9\sqrt{5}H_0^0 (H_1^{-1})^2 (H_1^1)^2 }\over {14\pi ^2}} \end{aligned}$$
$$\begin{aligned}&-{{9 \sqrt{5} (H_1^{-1})^2 (H_1^1)^2 }\over {35 \pi ^{{{3}\over {2}}}}}-{{3\sqrt{5}\sqrt{6}\sqrt{10}\sqrt{15} H_1^{-1} (H_1^0)^4 H_1^1 }\over {4900\pi ^{{{5}\over {2}}}}} \nonumber \\&-{{3\sqrt{2}\sqrt{3}\sqrt{5} \sqrt{10}\sqrt{15} H_1^{-1} (H_1^0)^4 H_1^1 }\over {4900\pi ^{{{5}\over {2}}}}}\nonumber \\&-{{102 \sqrt{2}\sqrt{3}\sqrt{5}\sqrt{6} H_1^{-1} (H_1^0)^4 H_1^1 }\over {6125\pi ^{{{5}\over {2 }}}}} \nonumber \\&-{{10233\sqrt{5} H_1^{-1} (H_1^0)^4 H_1^1 }\over {98000\pi ^{{{5}\over {2}}}}}-{{9\sqrt{2 }\sqrt{3}\sqrt{5}\sqrt{6}(H_0^0)^2 H_1^{-1} (H_1^0)^2 H_1^1 }\over {140\pi ^{ {{5}\over {2}}}}} \nonumber \\&-{{27\sqrt{5}(H_0^0)^2 H_1^{-1} (H_1^0)^2 H_1^1 }\over {280\pi ^{ {{5}\over {2}}}}}+{{3\sqrt{2}\sqrt{3}\sqrt{5}\sqrt{6}H_0^0 H_1^{-1} (H_1^0)^2 H_1^1 }\over {70\pi ^2}} \nonumber \\&+{{9\sqrt{5} H_0^0 H_1^{-1} (H_1^0)^2 H_1^1 }\over {140\pi ^2}}-{{3\sqrt{2}\sqrt{3}\sqrt{5}\sqrt{6 } H_1^{-1} (H_1^0)^2 H_1^1 }\over {175\pi ^{{{3}\over {2}}}}} \nonumber \\&-{{9\sqrt{5} H_1^{-1} (H_1^0)^2 H_1^1 }\over {350\pi ^{ {{3}\over {2}}}}}+{{3\sqrt{5} (H_0^0)^4 H_1^{-1} H_1^1 }\over {16\pi ^{{{5}\over {2}}}}} -{{ \sqrt{5} (H_0^0)^3 H_1^{-1} H_1^1 }\over {4\pi ^2}}\nonumber \\&+{{3\sqrt{5}(H_0^0)^2 H_1^{-1} H_1^1 }\over {10\pi ^{{{3}\over {2 }}}}} -{{3\sqrt{5}H_0^0 H_1^{-1} H_1^1 }\over {10\pi }}+{{\sqrt{5} H_1^{-1} H_1^1 }\over {5\sqrt{\pi }}} \nonumber \\&+{{9\sqrt{5} (H_1^0)^6 }\over {112\pi ^{{{5}\over {2}}}}}+{{27\sqrt{5} (H_0^0)^2 (H_1^0)^4 }\over {56\pi ^{{{5}\over {2 }}}}} -{{9\sqrt{5}H_0^0 (H_1^0)^4 }\over {28\pi ^2}}+{{9\sqrt{5} (H_1^0)^4 }\over {70 \pi ^{{{3}\over {2}}}}} \nonumber \\&+{{3\sqrt{5} (H_0^0)^4 (H_1^0)^2 }\over {16\pi ^{{{5}\over {2}}}}}-{{\sqrt{5} (H_0^0)^3 (H_1^0)^2 }\over {4\pi ^2}} +{{3 \sqrt{5}(H_0^0)^2 (H_1^0)^2 }\over {10\pi ^{{{3}\over {2}}}}}\nonumber \\&-{{3\sqrt{5}H_0^0 (H_1^0)^2 }\over {10\pi }} +{{\sqrt{5} (H_1^0)^2 }\over {5 \sqrt{\pi }}} \end{aligned}$$
(F.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Liu, Y., Liu, C. et al. A generalized theory of the figure of the Earth: formulae. J Geod 93, 297–317 (2019). https://doi.org/10.1007/s00190-018-1159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-018-1159-6

Keywords

Navigation