Satellite laser ranging to low Earth orbiters: orbit and network validation

  • Daniel ArnoldEmail author
  • Oliver Montenbruck
  • Stefan Hackel
  • Krzysztof Sośnica
Original Article


Satellite laser ranging (SLR) to low Earth orbiters (LEOs) provides optical distance measurements with mm-to-cm-level precision. SLR residuals, i.e., differences between measured and modeled ranges, serve as a common figure of merit for the quality assessment of orbits derived by radiometric tracking techniques. We discuss relevant processing standards for the modeling of SLR observations and highlight the importance of line-of-sight-dependent range corrections for the various types of laser retroreflector arrays. A 1–3 cm consistency of SLR observations and GPS-based precise orbits is demonstrated for a wide range of past and present LEO missions supported by the International Laser Ranging Service (ILRS). A parameter estimation approach is presented to investigate systematic orbit errors and it is shown that SLR validation of LEO satellites is not only able to detect radial but also along-track and cross-track offsets. SLR residual statistics clearly depend on the employed precise orbit determination technique (kinematic vs. reduced-dynamic, float vs. fixed ambiguities) but also reveal pronounced differences in the ILRS station performance. Using the residual-based parameter estimation approach, corrections to ILRS station coordinates, range biases, and timing offsets are derived. As a result, root-mean-square residuals of 5–10 mm have been achieved over a 1-year data arc in 2016 using observations from a subset of high-performance stations and ambiguity-fixed orbits of four LEO missions. As a final contribution, we demonstrate that SLR can not only validate single-satellite orbit solutions but also precise baseline solutions of formation flying missions such as GRACE, TanDEM-X, and Swarm.


Precise orbit determination Satellite laser ranging Laser retroreflector array GPS Orbit and network validation 



The authors are grateful to all members of the International Satellite Laser Ranging Service for their continued effort to collect and publicly provide SLR observations of geodetic satellites. Their work provides the basis for the present study and is an essential contribution to numerous space missions. We also acknowledge the use of various precise orbit determination products of low Earth orbit satellites shared by the Centre National d’Etudes Spatiales, the Copernicus POD Service, the European Space Agency ESA, the University of Texas, the Jet Propulsion Laboratory, and various other institutions. Their support is likewise highly appreciated.


  1. Allende-Alba G, Montenbruck O, Jäggi A, Arnold D, Zangerl F (2017) Reduced-dynamic and kinematic baseline determination for the Swarm mission. GPS Solut. Google Scholar
  2. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 121(8):6109–6131. CrossRefGoogle Scholar
  3. Ashby N (2004) The Sagnac effect in the Global Positioning System. In: Rizzi G, Ruggiero ML (eds) Relativity in rotating frames. Springer, Berlin, pp 11–28. CrossRefGoogle Scholar
  4. Auriol A, Tourain C (2010) DORIS system: the new age. Adv Space Res 46(12):1484–1496. CrossRefGoogle Scholar
  5. Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geodesy 84(5):327–337. CrossRefGoogle Scholar
  6. Bettadpur S (2012) Gravity recovery and climate experiment—product specification document, 4.6 (edn).
  7. Bock H, Jäggi A, Beutler G, Meyer U (2014) GOCE: precise orbit determination for the entire mission. J Geodesy 88(11):1047–1060. CrossRefGoogle Scholar
  8. Boomkamp H (2003) The CHAMP orbit comparison campaign. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Berlin, pp 53–58. CrossRefGoogle Scholar
  9. Buckreuss S, Balzer W, Mühlbauer P, Werninghaus R, Pitz W (2003) The TerraSAR-X satellite project. In: Proceedings of international geoscience and remote sensing symposium IGARSS’03, vol 5. IEEE, pp 3096–3098.
  10. Bury G, Sośnica K (2017) Impact of atmospheric pressure loading on SLR-derived station coordinates using range measurements to multi-GNSS satellites. In: Proceedings of ILRS technical workshop 2017, Riga, Latvia, 02–05 Oct 2017Google Scholar
  11. Chalmers OSO (2016) Ocean tide loading provider web site. Accessed 9 Apr 2018
  12. Combrinck L (2010) Satellite laser ranging. In: Xu S (ed) Sciences of geodesy, vol 1. Springer, Berlin, pp 301–338. CrossRefGoogle Scholar
  13. Coulot D, Berio P, Biancale R, Loyer S, Soudarin L, Gontier AM (2007) Toward a direct combination of space-geodetic techniques at the measurement level: methodology and main issues. J Geophys Res Solid Earth. Google Scholar
  14. Dach R, Böhm J, Lutz S, Steigenberger P, Beutler G (2011) Evaluation of the impact of atmospheric pressure loading modeling on GNSS data analysis. J Geodesy 85(2):75–91CrossRefGoogle Scholar
  15. Donlon C, Berruti B, Buongiorno A, Ferreira MH, Féménias P, Frerick J, Goryl P, Klein U, Laur H, Mavrocordatos C et al (2012) The global monitoring for environment and security (GMES) Sentinel-3 mission. Remote Sens Environ 120:37–57. CrossRefGoogle Scholar
  16. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83(3):191–198. CrossRefGoogle Scholar
  17. Dunn C, Bertiger W, Franklin G, Harris I, Kruizinga G, Meehan T, Nandi S, Nguyen D, Rogstad T, Thomas JB, Tien J (2002) The instrument on NASA’s GRACE mission: augmentation of GPS to achieve unprecedented gravity field measurements. In: Proceedings of the 15th international technical meeting of the satellite division of the institute of navigation (ION GPS 2002), pp 724–730Google Scholar
  18. Exertier P, Belli A, Lemoine JM (2017) Time biases in laser ranging observations: a concerning issue of space geodesy. Adv Space Res 60:948–968. CrossRefGoogle Scholar
  19. Fernández J, Fernández C, Féménias P, Peter H (2016) The Copernicus Sentinel-3 mission. In: ILRS Workshop 2016, ILRS, pp 1–4Google Scholar
  20. Fletcher K (ed) (2012) Sentinel-3—ESA’s Global land and ocean mission for GMES operational services. ESA SP-1322/3, NoordwijkGoogle Scholar
  21. Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger C, Piñeiro J, Da Costa A (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J Geodesy 85(11):749–758. CrossRefGoogle Scholar
  22. Flohrer C, Otten M, Springer T, Dow J (2011) Generating precise and homogeneous orbits for Jason-1 and Jason-2. Adv Space Res 48(1):152–172. CrossRefGoogle Scholar
  23. Friis-Christensen E, Lühr H, Knudsen D, Haagmans R (2008) Swarm—an Earth observation mission investigating geospace. Adv Space Res 41(1):210–216. CrossRefGoogle Scholar
  24. GGOSATM (2017) Vienna-APL data sets.
  25. Gibbs P, Potter C, Sherwood R, Wilkinson M, Benham D, Smith V, Appleby G (2006) Some early results of kilohertz laser ranging at Herstmonceux. In: Proceedings of 15th international workshop on laser ranging, pp 250–258Google Scholar
  26. Hackel S, Montenbruck O, Steigenberger P, Balss U, Gisinger C, Eineder M (2017) Model improvements and validation of TerraSAR-X precise orbit determination. J Geodesy 91(5):547–562. CrossRefGoogle Scholar
  27. Haines BJ, Armatys MJ, Bar-Sever YE, Bertiger WI, Desai SD, Dorsey AR, Lane CM, Weiss JP (2011) One-centimeter orbits in near-real time: the GPS experience on OSTM/Jason-2. J Astronaut Sci 58(3):445–459. CrossRefGoogle Scholar
  28. Holt G, Lightsey E, Montenbruck O (2003) Benchmark testing for spaceborne global positioning system receivers. In: AIAA guidance, navigation, and control conference and exhibit, p 5666Google Scholar
  29. ILRS Analysis Standing Committee (2016) SLRF2008. Accessed 9 Apr 2018
  30. ITRF (2017) ITRF2014 post-seismic deformation data for SLR stations.
  31. Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low-Earth orbiters. J Geodesy 80(1):47–60. CrossRefGoogle Scholar
  32. Jäggi A, Beutler G, Bock H, Hugentobler U (2007a) Dynamic Planet—monitoring and understanding a dynamic planet with geodetic and oceanographic tools. In: Rizos C, Tregoning P (eds) Kinematic and highly reduced-dynamic LEO orbit determination for gravity field estimation. Springer, Berlin, pp 354–361. Google Scholar
  33. Jäggi A, Hugentobler U, Bock H, Beutler G (2007b) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10):1612–1619. CrossRefGoogle Scholar
  34. Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geodesy 83(12):1145–1162. CrossRefGoogle Scholar
  35. Jäggi A, Montenbruck O, Moon Y, Wermuth M, König R, Michalak G, Bock H, Bodenmann D (2012) Inter-agency comparison of TanDEM-X baseline solutions. Adv Space Res 50(2):260–271. CrossRefGoogle Scholar
  36. Jäggi A, Dahle C, Arnold D, Bock H, Meyer U, Beutler G, van den IJssel J (2016) Swarm kinematic orbits and gravity fields from 18 months of GPS data. Adv Space Res 57(1):218–233. CrossRefGoogle Scholar
  37. Kang Z, Tapley B, Bettadpur S, Ries J, Nagel P, Pastor R (2006) Precise orbit determination for the GRACE mission using only GPS data. J Geodesy 80(6):322–331. CrossRefGoogle Scholar
  38. Krieger G, Hajnsek I, Papathanassiou KP, Younis M, Moreira A (2010) Interferometric synthetic aperture radar (SAR) missions employing formation flying. Proc IEEE 98(5):816–843. CrossRefGoogle Scholar
  39. Kroes R, Montenbruck O, Bertiger W, Visser P (2005) Precise GRACE baseline determination using GPS. GPS Solut 9(1):21–31. CrossRefGoogle Scholar
  40. Lambin J, Morrow R, Fu LL, Willis JK, Bonekamp H, Lillibridge J, Perbos J, Zaouche G, Vaze P, Bannoura W et al (2010) The OSTM/Jason-2 mission. Mar Geodesy 33(S1):4–25. CrossRefGoogle Scholar
  41. Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56(2):135–149. CrossRefGoogle Scholar
  42. Loyer S, Perosanz F, Mercier F, Capdeville H, Marty JC (2012) Zero-difference GPS ambiguity resolution at CNES-CLS IGS analysis center. J Geodesy 86(11):991. CrossRefGoogle Scholar
  43. Luthcke S, Zelensky N, Rowlands D, Lemoine F, Williams T (2003) The 1-centimeter orbit: Jason-1 precision orbit determination using GPS, SLR, DORIS, and altimeter data. Mar Geodesy 26(3–4):399–421. CrossRefGoogle Scholar
  44. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415. CrossRefGoogle Scholar
  45. McWilliams HE (2015) Validating the 1-cm orbit, MSc thesis, University of Texas at AustinGoogle Scholar
  46. Mendes V, Pavlis E (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31(14):L14,602. CrossRefGoogle Scholar
  47. Montenbruck O, Kroes R (2003) In-flight performance analysis of the CHAMP BlackJack GPS receiver. GPS Solut 7(2):74–86. CrossRefGoogle Scholar
  48. Montenbruck O, Neubert R (2011) Range correction for the CryoSat and GOCE laser retroreflector arrays, DLR/GSOC TN 11-01. Accessed 9 Apr 2018
  49. Montenbruck O, Garcia-Fernandez M, Williams J (2006) Performance comparison of semicodeless GPS receivers for LEO satellites. GPS Solut 10(4):249–261. CrossRefGoogle Scholar
  50. Montenbruck O, Hackel S, Jäggi A (2017) Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations. J Geodesy.
  51. Montenbruck O, Allende-Alba G, Rosello J, Tossaint M, Zangerl F (2018) Precise orbit and baseline determination for the SAOCOM-CS bistatic radar mission. Navig J ION 65(1):15–24. CrossRefGoogle Scholar
  52. Neubert R (2009) The center of mass correction (CoM) for laser ranging data of the CHAMP reflector, Issue c, 14 Oct 2009.
  53. Neubert R, Grunwaldt L, Neubert J (1998) The retro-reflector for the CHAMP satellite: Final design and realization. In: Proceedings of the 11th international workshop on laser ranging, pp 260–270Google Scholar
  54. Otsubo T (2017) Multi-satellite bias analysis report v2 for worldwide satellite laser ranging stations. Accessed 9 Apr 2018
  55. Otsubo T, Kubo-oka T, Gotoh T, Ichikawa R (2004) Atmospheric “blue sky” effects on SLR station coordinates. In: Proceedings of 14th ILRS workshop, San Feronando, pp 69–74Google Scholar
  56. Pearlman MR, Degnan JJ, Bosworth J (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143. CrossRefGoogle Scholar
  57. Peter H, Fernández J, Ayuga F, Féménias P (2016) Copernicus POD service: orbit determination of the Sentinel satellites. In: EGU general assembly conference abstracts, vol 18, p 3855Google Scholar
  58. Peter H, Jäggi A, Fernández J, Escobar D, Ayuga F, Arnold D, Wermuth M, Hackel S, Otten M, Simons W, Visser P, Hugentobler U, Féménias P (2017) Sentinel-1A–first precise orbit determination results. Adv Space Res. Google Scholar
  59. Petit G, Luzum B (2010) IERS conventions (2010). IERS Technical Note no. 36, Verlag des Bundesamts für Kartographie und Geodäsie, FrankfurtGoogle Scholar
  60. Prange L, Jäggi A, Dach R, Bock H, Beutler G, Mervart L (2010) AIUB-CHAMP02S: the influence of GNSS model changes on gravity field recovery using spaceborne GPS. Adv Space Res 45(2):215–224. CrossRefGoogle Scholar
  61. Quartly GD, Legeais JF, Ablain M, Zawadzki L, Joana Fernandes M, Rudenko S, Carrère L, Nilo García P, Cipollini P, Andersen OB, Poisson JC, Mbajon Njiche S, Cazenave A, Benveniste J (2017) A new phase in the production of quality-controlled sea level data. Earth Syst Sci Data 9:557–572. CrossRefGoogle Scholar
  62. Rebischung P (2012) IGb08: an update on IGS08, IGSMAIL-6663, 24 Sep. 2012.
  63. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. CrossRefGoogle Scholar
  64. Reigber C, Lühr H, Schwintzer P (2000) Status of the CHAMP mission. In: Towards an integrated global geodetic observing system (IGGOS). Springer, pp 63–65Google Scholar
  65. Ricklefs RL, Moore CJ (2009) Consolidated laser ranging data format (CRD), version 1.01. Format specification, ILRS data formats and procedures working group. Accessed 9 Apr 2018
  66. Rim HJ, Yoon S, Schultz BE (2013) The GLAS algorithm theoretical basis document for precision orbit determination (POD). Technical Report NASA/TM-2013-208641, Volume 11, NASA Goddard Space Flight Center. Accessed 9 Apr 2018
  67. Roselló Guasch J, Silvestrin P, Aguirre M, Massotti L (2010) Navigation needs for ESA’s Earth observation missions. In: Sandau R, Roeser HP, Valenzuela A (eds) Small satellite missions for Earth observation. Springer, Berlin, pp 439–447. CrossRefGoogle Scholar
  68. Schutz BE, Tapley BD, Abusali PAM, Rim HJ (1994) Dynamic orbit determination using GPS measurements from TOPEX/POSEIDON. Geophys Res Lett 21(19):2179–2182CrossRefGoogle Scholar
  69. Schutz BE, Zwally HJ, Shuman CA, Hancock D, DiMarzio JP (2005) Overview of the ICESat mission. Geophys Res Lett 32(21):1–4. CrossRefGoogle Scholar
  70. Shargorodsky V (2002) CryoSat-LRR-01 laser retro reflector technical description, K01-E1095-00-00 TO, Scientific Research Institute for Precision Instruments, Moscow. Accessed 9 Apr 2018
  71. Sośnica K, Thaller D, Dach R, Jäggi A, Beutler G (2013) Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results. J Geodesy 87(8):751–769. CrossRefGoogle Scholar
  72. Švehla D, Rothacher M (2002) Kinematic orbit determination of LEOs based on zero or double-difference algorithms using simulated and real SST GPS data. In: Ádám J, Schwarz K-P (eds) Vistas for geodesy in the new millennium. Springer, Berlin, pp 322–328. Google Scholar
  73. Švehla D, Rothacher M (2003) CHAMP double-difference kinematic POD with ambiguity resolution. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Berlin, pp 70–77. Google Scholar
  74. Tapley B, Schutz B, Born GH (2004) Statistical orbit determination. Academic Press, CambridgeGoogle Scholar
  75. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–506. CrossRefGoogle Scholar
  76. Wijaya DD, Böhm J, Karbon M, Kràsnà H, Schuh H (2013) Atmospheric pressure loading. In: Böhm J, Schuh H (eds) Atmospheric effects in space geodesy. Springer, Berlin, pp 137–157. CrossRefGoogle Scholar
  77. van den IJssel J, Encarnação J, Doornbos E, Visser P (2015) Precise science orbits for the Swarm satellite constellation. Adv Space Res 56(6):1042–1055. CrossRefGoogle Scholar
  78. Wu SC, Yunck TP, Thornton CL (1991) Reduced-dynamic technique for precise orbit determination of low Earth satellites. J Guidance Control Dyn 14(1):24–30CrossRefGoogle Scholar
  79. Yoon YT, Eineder M, Yague-Martinez N, Montenbruck O (2009) Precise trajectory estimation and quality assessment. IEEE Trans Geosci Remote Sens 47(6):1859–1868. CrossRefGoogle Scholar
  80. Yoon S, Rim HJ, Schutz BE (2012) Phase center variation modeling of ICESat GPS antenna for precision orbit determination. AIAA/AAS Astrodyn Spec Conf AIAA 2012–4879:1–12Google Scholar
  81. Yunck T, Bertiger W, Wu S, Bar-Sever Y, Christensen E, Haines B, Lichten S, Muellerschoen R, Vigue Y, Willis P (1994) First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon. Geophys Res Lett 21(7):541–544CrossRefGoogle Scholar
  82. Zangerl F, Griesauer F, Sust M, Montenbruck O, Buchert S, Garcia A (2014) SWARM GPS precise orbit determination receiver initial in-orbit performance evaluation. In: Proceedings of ION GNSS+2014Google Scholar
  83. Zelensky NP, Lemoine FG, Beckley BD, Chinn DS, Pavlis DE (2018) Impact of ITRS 2014 realizations on altimeter satellite precise orbit determination. Adv Space Res 61(1):45–73. CrossRefGoogle Scholar
  84. Zin A, Landenna S, Conti A (2006) Satellite to satellite tracking instrument. In: Proceedings of 3rd international GOCE user workshopGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Astronomical InstituteUniversity of BernBernSwitzerland
  2. 2.German Space Operations CenterDeutsches Zentrum für Luft- und RaumfahrtWeßlingGermany
  3. 3.Institute of Geodesy and GeoinformaticsWrocław University of Environmental and Life SciencesWrocławPoland

Personalised recommendations