Skip to main content
Log in

GNSS satellite transmit power and its impact on orbit determination

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50–240 W were obtained, 20–135 W for GLONASS, 95–265 W for Galileo, and 130–185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1–27 mm depending on the transmit power, the satellite mass, and the orbital period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Available at https://www.navcen.uscg.gov/.

  2. ftp://ftp.cddis.eosdis.nasa.gov/slr/products/resource.

References

  • Agueda A, Zandbergen R (2004) NAPEOS mathematical models and algorithms. Technical report, NAPEOS-MM-01, iss. 3.0, 04/06/2004, ESA/ESOC, Darmstadt

  • Ajioka J, Harry H (1970) Shaped beam antenna for Earth coverage from a stabilized satellite. IEEE Trans Antenna Propag 18(3):323–327. https://doi.org/10.1109/TAP.1970.1139681

    Article  Google Scholar 

  • Baars J, Genzel R, Pauliny-Thoth I, Witzel W (1977) The absolute spectrum of Cas A: an accurate flux density scale and a set of second calibrators. Astron Astrophys 61(1):99–106

    Google Scholar 

  • Barker BC, Betz JW, Clark JE, Correia JT, Gillis JT, Lazar S, Rehborn KA, Straton JR (2000) Overview of the GPS M code signal. In: ION NTM 2000. Anaheim, pp 542–549

  • Betz J, Blanco M, Cahn C, Dafesh P, Hegarty C, Hudnut K, Kasemsri V, Keegan R, Kovach K, Lenahan L, Ma H, Rushanan J, Sklar D, Stansell T, Wang C, Yi S (2007) Enhancing the future of civil GPS: overview of the L1C signal. Inside GNSS 2(3):42–49

    Google Scholar 

  • Chang X, Mei X, Yang H (2015) Space service volume performance of BDS. In: 10th Meeting of the International Committee on Global Navigation Satellite Systems (ICG-10)

  • COSPAS-SARSAT (2013) Description of the 406 MHz payloads used in the COSPAS-SARSAT MEOSAR system. Technical report, http://vnmcc.vishipel.vn/images/uploads/attach/T016.PDF

  • Czopek F, Shollenberger S (1993) Description and performance of the GPS Block I and II L-band antenna and link budget. In: ION GPS 1993. Salt Lake City, pp 37–43

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198. https://doi.org/10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Eanes RJ, Nerem RS, Abusali P, Bamford W, Key K, Ries JC, Schutz BE (1999) GLONASS orbit determination at the Center for Space Research. In: Slater J, Noll C, Gowey K (eds) International GLONASS Experiment IGEX-98 Workshop Proceedings, IGS. Jet Propulsion Laboratory, pp 209–217

  • Edgar C, Price J, Reigh D (1998) GPS Block IIA and IIR received signal power measurements. In: ION NTM 1998. Long Beach, pp 401–411

  • Edgar C, Goldstein DB, Bentley P (2002) Current constellation GPS satellite ground received signal power measurements. In: ION NTM 2002. San Diego, pp 948–954

  • European GNSS Service Center (2016) Galileo IOV satellite metadata. European Global Navigation Satellite Systems Agency, https://www.gsc-europa.eu/support-to-developers/galileo-iov-satellite-metadata

  • Falcone M (2016) Galileo system status. In: ION GNSS+ 2016. Portland, pp 2410–2430

  • Fatkulin R, Kossenko V, Storozhev S, Zvonar V, Chebotarev V (2012) GLONASS space segment: satellite constellation, Glonass-M and Glonass-K spacecraft main features. ION GNSS 2012:3912–3930

    Google Scholar 

  • Feng W, Guo X, Qiu H, Zhang J, Dong K (2014) A study of analytical solar radiation pressure modeling for BeiDou navigation satellites based on raytracing method. In: Sun J, Jiao W, Wu H, Lu M (eds) China Satellite Navigation Conference (CSNC) 2014 Proceedings: volume II, Lecture Notes in Electrical Engineering. Springer, Berlin, pp 425–435. https://doi.org/10.1007/978-3-642-54743-0_35

  • Fisher SC, Ghasemi K (1999) GPS IIF—the next generation. Proc IEEE 87(1):24–47. https://doi.org/10.1109/5.736340

    Article  Google Scholar 

  • Ghasemi A, Abedi A, Ghasemi F (2012) Basic principles in radio wave propagation. In: Propagation engineering in wireless communications, chap 2. Springer, New York, pp 23–55. https://doi.org/10.1007/978-1-4614-1077-5_2

  • Hauschild A, Montenbruck O, Thoelert S, Erker S, Meurer M, Ashjaee J (2012) A multi-technique approach for characterizing the SVN49 signal anomaly, part 1: receiver tracking and IQ constellation. GPS Solut 16(1):19–28. https://doi.org/10.1007/s10291-011-0203-2

    Article  Google Scholar 

  • Hegarty C (2017) The Global Positioning System (GPS). In: Teunissen P, Montenbruck O (eds) Springer Handbook of Global Navigation Satellite Systems, chap 7. Springer, Berlin, pp 197–218. https://doi.org/10.1007/978-3-319-42928-1_7

  • Higbie P, Blocker N (1994) Detecting nuclear detonations with GPS. GPS World 5(2):48–50

    Google Scholar 

  • ICD-GPS-200C (2000) Interface conrol document ICD-GPS-200: Navstar GPS space segment/navigation user segment interfaces. Technical report, ARINC Research Corporation, http://www.gps.gov/technical/icwg/ICD-GPS-200C.pdf

  • IGS (2011) Calculated and estimated GPS transmit power levels. http://acc.igs.org/orbits/thrust-power.txt

  • Ilcev DS (2007) Cospas-Sarsat LEO and GEO: satellite distress and safety systems (SDSS). Int J Satell Commun Netw 25(6):559–573

    Article  Google Scholar 

  • Inaba N, Matsumoto A, Hase H, Kogure S, Sawabe M, Terada K (2009) Design concept of Quasi Zenith Satellite System. Acta Astronaut 65(7–8):1068–1075. https://doi.org/10.1016/j.actaastro.2009.03.068

    Article  Google Scholar 

  • Irsigler M, Hein GW, Schmitz-Peiffer A (2004) Use of C-band frequencies for satellite navigation: benefits and drawbacks. GPS Solut 8(3):119–139. https://doi.org/10.1007/s10291-004-0098-2

    Article  Google Scholar 

  • IS-GPS-200E (2010) Interface specification IS-GPS-200: Navstar GPS space segment/navigation user segment interfaces. Technical report, Global Positioning System Wing (GPSW) Systems Engineering and Integration. http://www.gps.gov/technical/icwg/IS-GPS-200E.pdf

  • IS-GPS-200H (2014) Interface specification IS-GPS-200: Navstar GPS space segment/navigation user segment interfaces. Technical report, Global Positioning Systems Directorate Systems Engineering and Integration. http://www.gps.gov/technical/icwg/IS-GPS-200H.pdf

  • IS-GPS-705A (2010) Navstar GPS space segment/user segment L5 interfaces. Technical report, Global Positioning System Wing (GPSW) Systems Engineering and Integration. http://www.gps.gov/technical/icwg/IS-GPS-705A.pdf

  • IS-GPS-800A (2010) Navstar GPS space segment/user segment L1C interface. Technical report, Global Positioning System Wing (GPSW) Systems Engineering and Integration. http://www.gps.gov/technical/icwg/IS-GPS-800A.pdf

  • IS-QZSS-L1S-001 (2017) Quasi-Zenith Satellite System Interface Specification Sub-meter Level Augmentation Service. Technical report, Cabinet Office. http://qzss.go.jp/en/technical/download/pdf/ps-is-qzss/is-qzss-pnt-001.pdf

  • ITU-R (2005) Specific attenuation model for rain for use in prediction methods. Recommendation ITU-R P.838-3, Radiocommunication Sector of International Telecommunication Union (ITU-R)

  • ITU-R (2013a) Attenuation by atmospheric gases. Recommendation ITU-R P.676-10, Radiocommunication Sector of International Telecommunication Union (ITU-R)

  • ITU-R (2013b) Attenuation due to clouds and fog. Recommendation ITU-R P.840-6, Radiocommunication Sector of International Telecommunication Union (ITU-R)

  • ITU-R (2013c) Reference standard atmospheres. Recommendation ITU-R P.676-10, Radiocommunication Sector of International Telecommunication Union (ITU-R)

  • Kogure S, Ganeshan AS, Montenbruck O (2017) Regional systems. In: Teunissen P, Montenbruck O (eds) Springer Handbook of Global Navigation Satellite Systems, chap 11. Springer, Berlin. pp 305–337. https://doi.org/10.1007/978-3-319-42928-1_11

  • Kramer HJ (2002) Observation of the earth and its environment: survey of missions and sensors, 4th edn. Springer, Berlin. https://doi.org/10.1007/978-3-642-56294-5

    Book  Google Scholar 

  • Marquis W (2014) The GPS Block IIR/IIR-M antenna panel pattern: Appendix B - SV-specific patterns, data. Lockheed Martin Space Systems Company. http://www.lockheedmartin.com/content/dam/lockheed/data/space/photo/gps/gpspubs/Appendix

  • Marquis W (2015) The GPS Block IIR/IIR-M antenna panel pattern. Lockheed Martin Space Systems Company. http://www.lockheedmartin.com/content/dam/lockheed/data/space/documents/gps/GPS-Block-IIR-and-IIR-M-Antenna-Panel-Pattern-Marquis-Aug2015-revised.pdf

  • Marquis W (2016) The GPS Block IIR antenna panel pattern and its use on-orbit. In: ION GNSS+ 2016. Portland, pp 2896–2909

  • Marquis WA, Reigh DL (2015) The GPS Block IIR and IIR-M broadcast L-band antenna panel: its pattern and performance. Navigation 62(4):329–347. https://doi.org/10.1002/navi.123

    Article  Google Scholar 

  • Melbourne WG (1985) The case for ranging in GPS based geodetic systems. In: Goad C (ed) Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, U.S. Department of Commerce, Rockville, pp 373–386

  • Mendes VB, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31:L14602. https://doi.org/10.1029/2004GL020308

  • Milani A, Nobili AM, Farinella P (1987) Non-gravivational perturbations and satellite geodesy. Adam Hilger, Bristol

    Google Scholar 

  • Mölders N, Kramm G (2014) Lectures in meteorology. Springer, Berlin

    Book  Google Scholar 

  • Montenbruck O, Schmid R, Mercier F, Steigenberger P, Noll C, Fatkulin R, Kogure S, Ganeshan A (2015) GNSS satellite geometry and attitude models. Adv Space Res 56(6):1015–1029. https://doi.org/10.1016/j.asr.2015.06.019

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P, Hugentobler U (2015b) Enhanced solar radiation pressure modeling for Galileo satellites. J Geod 89(3):283–297. https://doi.org/10.1007/s00190-014-0774-0

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P, Darugna F (2017) Semi-analytical solar radiation pressure modeling for QZS-1 orbit-normal and yaw-steering attitude. Adv Space Res 59(8):2088–2100. https://doi.org/10.1016/j.asr.2017.01.036

    Article  Google Scholar 

  • Montesano A, Montesano C, Caballero R, Naranjo M, Monjas F, Cuesta LE, Zorrilla P, Martínez L (2007) Galileo system navigation antenna for global positioning. In: Proceedings of EuCAP 2007

  • Noda H, Kogure S, Kishimoto M, Soga H, Moriguchi T, Furubayashi T (2010) Development of the Quasi-Zenith Satellite System and high-accuracy positioning experiment system flight model. NEC Tech J 5(3):93–97

    Google Scholar 

  • NovAtel Inc (2006) GPS-704X antenna design and performance. Technical report. http://www.novatel.com/assets/Documents/Papers/GPS-704xWhitePaper.pdf

  • Pearlman M, Degnan J, Bosworth J (2002) The International Laser Ranging Service. Adv Space Res 30(2):125–143. https://doi.org/10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Rebeyrol E, Macabiau C, Ries L, Bousquet M, Bouchere ML (2006) Interplex modulation for navigation systems at the L1 band. In: ION NTM 2006. Monterey, pp 100–111

  • Rebischung P, Altamimi Z, Ray J, Garayt B (2016a) The IGS contribution to ITRF2014. J Geod 90(7):611–630. https://doi.org/10.1007/s00190-016-0897-6

    Article  Google Scholar 

  • Rebischung P, Schmid R, Herring T (2016b) Upcoming switch to IGS14/igs14.atx. IGSMAIL-7399. https://igscb.jpl.nasa.gov/pipermail/igsmail/2016/008589.html

  • Revnivykh S, Bolkunov A, Serdyukov A, Montenbruck O (2017) GLONASS. In: Teunissen P, Montenbruck O (eds) Springer Handbook of Global Navigation Satellite Systems, chap 8. Springer, Berlin, pp 219–245. https://doi.org/10.1007/978-3-319-42928-1_8

  • Rodriguez-Solano C, Hugentobler U, Steigenberger P (2012) Impact of albedo radiation on GPS satellites. In: Geodesy for Planet Earth, Springer, International Association of Geodesy Symposia 136:113–119. https://doi.org/10.1007/978-3-642-20338-1_14

  • Schrank H (1983) Antenna designer’s notebook: polarization mismatch loss. IEEE Antennas Propag Soc Newslett 25(4):28–29. https://doi.org/10.1109/MAP.1983.27697

    Article  Google Scholar 

  • Seybold JS (2005) Introduction to HF propagation. Wiley, Hoboken

    Book  Google Scholar 

  • Sosnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015) Satellite laser ranging to GPS and GLONASS. J Geod 89(7):725–743. https://doi.org/10.1007/s00190-015-0810-8

    Article  Google Scholar 

  • Spence R (2010) Reference assumptions for GPS/Galileo compatibility analyses. NASA, Washington

  • Spilker Jr JJ (1996) Tropospheric effects on GPS. In: Parkinson BW, Spilker Jr JJ (eds) Global Positioning System: theory and applications volume I, Progress in Astronautics and Aeronautics, chap 13, Vol 163, American Institute of Aeronautics and Astronautics, pp 517–546

  • Steigenberger P, Montenbruck O (2016) Galileo status: orbits, clocks, and positioning. GPS Solut 21(2):319–331. https://doi.org/10.1007/s10291-016-0566-5

    Article  Google Scholar 

  • Steigenberger P, Montenbruck O, Hugentobler U (2015) GIOVE-B solar radiation pressure modeling for precise orbit determination. Adv Space Res 55(5):1422–1431. https://doi.org/10.1016/j.asr.2014.12.009

    Article  Google Scholar 

  • Steigenberger P, Hauschild A, Langley R (2017) US Air Force puts more power into GPS Block IIR-M C/A-code. GPS World 28(4):8–9

    Google Scholar 

  • Thoelert S, Erker S, Meurer M (2009) GNSS signal verification with a high gain antenna—calibration strategies and high quality signal assessment. In: ION ITM 2009. Portland, pp 2896–2909

  • Thoelert S, Furthner J, Meurer M (2012) New birds in the sky—signal in space (SIS) analysis of new GNSS satellites. In: ION GNSS 2012. Nashville, pp 3613–3619

  • Thoelert S, Meurer M, Erker S, Montenbruck O, Hauschild A, Fenton P (2012b) A multi-technique approach for characterizing the SVN49 signal anomaly, part 2: chip shape analysis. GPS Solut 16(1):29–39. https://doi.org/10.1007/s10291-011-0204-1

    Article  Google Scholar 

  • Thoelert S, Furthner J, Meurer M (2013) GNSS survey—signal quality assessment of the latest GNSS satellites. In: ION ITM 2013. San Diego, pp 608–615

  • Thoelert S, Montenbruck O, Meurer M (2014) IRNSS-1A: signal and clock characterization of the Indian regional navigation system. GPS Solut 18(1):147–152. https://doi.org/10.1007/s10291-013-0351-7

  • Valle P, Netti A, Zolesi M, Mizzoni R, Bandinelli M, Guidi R (2006) Efficient dual-band planar array suitable to GALILEO. In: Proceedings First European Conference on Antennas and Propagation (EuCAP 2006). https://doi.org/10.1109/EUCAP.2006.4584868

  • Visser HJ (2012) Antenna theory and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Wu A (2002) Predictions and field measurements of the GPS Block IIR L1 and L2 ground powers. In: ION NTM 2002. San Diego, pp 931–938

  • Wübbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: Goad C (ed) Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, U.S. Department of Commerce, Rockville, pp 403–412

  • Xiao W, Liu W, Sun G (2015) Modernization milestone: BeiDou M2-S initial signal analysis. GPS Solut 20(1):125–133. https://doi.org/10.1007/s10291-015-0496-7

    Article  Google Scholar 

  • Yang Y, Tang J, Montenbruck O (2017) Chinese navigation satellite systems. In: Teunissen P, Montenbruck O (eds) Springer Handbook of Global Navigation Satellite Systems, chap 10. Springer, Berlin, pp 273–304. https://doi.org/10.1007/978-3-319-42928-1_10

  • Ziebart M, Edwards S, Adhya S, Sibthrope A, Arrowsmith P, Cross P (2004) High precision GPS IIR orbit prediction using analytical non-conservative force models. In: ION GNSS 2004. Long Beach, pp 1764–1770

  • Ziebart M, Sibthrope A, Cross P, Bar-Sever Y, Haines B (2007) Cracking the GPS-SLR orbit anomaly. In: ION GNSS 2007. Fort Worth, pp 2033–2038

Download references

Acknowledgements

We thank the European Space Agency for granting access to the NAPEOS software version 3.3.1, the International GNSS Service (IGS) and the International Laser Ranging Service (ILRS) for providing GNSS and SLR observation data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Steigenberger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steigenberger, P., Thoelert, S. & Montenbruck, O. GNSS satellite transmit power and its impact on orbit determination. J Geod 92, 609–624 (2018). https://doi.org/10.1007/s00190-017-1082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1082-2

Keywords

Navigation