Advertisement

Journal of Geodesy

, Volume 92, Issue 5, pp 529–544 | Cite as

Deriving time-series three-dimensional displacements of mining areas from a single-geometry InSAR dataset

  • Zefa Yang
  • Zhiwei Li
  • Jianjun Zhu
  • Guangcai Feng
  • Qijie Wang
  • Jun Hu
  • Changcheng Wang
Original Article

Abstract

This paper presents a method for deriving time-series three-dimensional (3-D) displacements of mining areas from a single-geometry interferometric synthetic aperture radar (InSAR) dataset (hereafter referred to as the SGI-based method). This is mainly aimed at overcoming the limitation of the traditional multi-temporal InSAR techniques that require SAR data from at least three significantly different imaging geometries to fully retrieve time-series 3-D displacements of mining areas. The SGI-based method first generates the multi-temporal observations of the mining-induced vertical subsidence from the single-geometry InSAR data, using a previously developed method for retrieving 3-D mining-related displacements from a single InSAR pair (SIP). The weighted least-squares solutions of the time series of vertical subsidence are estimated from these generated multi-temporal observations of vertical subsidence. Finally, the time series of horizontal motions in the east and north directions are estimated using the proportional relationship between the horizontal motion and the subsidence gradient of the mining area, on the basis of the SGI-derived time series of vertical subsidence. Seven ascending ALOS PALSAR images from the Datong mining area of China were used to test the proposed SGI-based method. The results suggest that the SGI-based method is effective. The SGI-based method not only extends the SIP-based method to time-series 3-D displacement retrieval from a single-geometry InSAR dataset, but also limits the uncertainty propagation from InSAR-derived deformation to the estimated 3-D displacements.

Keywords

3-D displacements Mining subsidence InSAR SAR Time series 

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 41474008, 41474007, and 41404013), the Hunan Provincial Natural Science Foundation of China (No. 13JJ1006), the Primary Research & Development Plan of Hunan Province (No. 2016SK2002), the Major Projects of High Resolution Earth Observation System of China (Civil Part) (No. 03-Y20A11-9001-15/16), the NASG Key Laboratory of Land Environment and Disaster Monitoring (No. LEDM2014B07), and the China Scholarship Council (No. 201506370139). The authors would also like to thank the Japan Aerospace Exploration Agency (JAXA) for providing the PALSAR images of the study area (Nos. 582 and 1390).

References

  1. Baran I, Stewart M, Claessens S (2005) A new functional model for determining minimum and maximum detectable deformation gradient resolved by satellite radar interferometry. IEEE Trans Geosci Remote Sens 43:675–682.  https://doi.org/10.1109/Tgrs.2004.843187 CrossRefGoogle Scholar
  2. Bechor NBD, Zebker HA (2006) Measuring two-dimensional movements using a single InSAR pair. Geophys Res Lett 33:L16311.  https://doi.org/10.1029/2006GL026883 CrossRefGoogle Scholar
  3. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383.  https://doi.org/10.1109/TGRS.2002.803792 CrossRefGoogle Scholar
  4. Cao Y, Li Z, Wei J, Hu J, Duan M, Feng G (2017) Stochastic modeling for time series InSAR: with emphasis on atmospheric effects. J Geod.  https://doi.org/10.1007/s00190-017-1055-5 Google Scholar
  5. Chen CW, Zebker HA (2000) Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms. J Opt Soc Am A Opt Image Sci Vis 17(3):401–414.  https://doi.org/10.1364/JOSAA.17.000401 CrossRefGoogle Scholar
  6. Costantini M (1998) A novel phase unwrapping method based on network programming. IEEE Trans Geosci Remote Sens 36(3):813–821.  https://doi.org/10.1109/36.673674 CrossRefGoogle Scholar
  7. Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Springer, New YorkCrossRefGoogle Scholar
  8. He LM, Wu LX, Liu SJ, Wang Z, Su C, Liu SN (2015) Mapping two-dimensional deformation field time-series of large slope by coupling DInSAR-SBAS with MAI-SBAS. Remote Sens 7(9):12440–12458.  https://doi.org/10.3390/rs70912440 CrossRefGoogle Scholar
  9. Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31(23):L23611.  https://doi.org/10.1029/2004GL021737 CrossRefGoogle Scholar
  10. Hou ZY, Zhang YH (2004) Movement law of coal mining subsidence surface ground in Datong Mining Area. Coal Sci Technol 2(32):50–53Google Scholar
  11. Hu J, Li ZW, Ding XL, Zhu JJ, Zhang L, Sun Q (2012) 3D coseismic displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements. J Geod 86(11):1029–1041.  https://doi.org/10.1007/s00190-012-0563-6 CrossRefGoogle Scholar
  12. Hu J, Li ZW, Ding XL, Zhu JJ, Zhang L, Sun Q (2014) Resolving three-dimensional surface displacements from InSAR measurements: a review. Earth Sci Rev 133:1–17.  https://doi.org/10.1016/j.earscirev.2014.02.005 CrossRefGoogle Scholar
  13. Jiang M, Li ZW, Zhu JJ, Ding XL, Feng GC (2011) Modeling minimum and maximum detectable deformation gradients of interferometric SAR measurements. Int J Appl Earth Obs Geoinf 13(5):766–777.  https://doi.org/10.1016/j.jag.2011.05.007 CrossRefGoogle Scholar
  14. Jung HS, Won JS, Kim SW (2009) An improvement of the performance of multiple-aperture SAR interferometry (MAI). IEEE Trans Geosci Remote Sens 47(8):2859–2869.  https://doi.org/10.1109/TGRS.2009.2016554 CrossRefGoogle Scholar
  15. Kratzdch H (1983) Mining subsidence engineering. Springer, New YorkCrossRefGoogle Scholar
  16. Li ZW, Ding XL, Zheng DW, Huang C (2008) Least squares-based filter for remote sensingimage noise reduction. IEEE Trans Geosci Remote Sens 46(7):2044–2049.  https://doi.org/10.1109/TGRS.2008.916981 CrossRefGoogle Scholar
  17. Li ZW, Zhao R, Hu J, Wen LX, Feng GC, Zhang ZY, Wang QJ (2015a) InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils. Sci Rep 5:15542.  https://doi.org/10.1038/srep15542 CrossRefGoogle Scholar
  18. Li ZW, Yang ZF, Zhu JJ, Hu J, Wang YJ, Li PX, Chen GL (2015b) Retrieving three-dimensional displacement fields of mining areas from a single InSAR pair. J Geod 89:17–32.  https://doi.org/10.1007/s00190-014-0757-1 CrossRefGoogle Scholar
  19. Neri M, Casu F, Acocella V et al (2009) Deformation and eruptions at Mt. Etna (Italy): a lesson from 15 years of observations. Geophys Res Lett 36(2):L02309.  https://doi.org/10.1029/2008GL036151 CrossRefGoogle Scholar
  20. Ng AHM, Chang HC, Ge LL, Rizos C, Omura M (2009) Assessment of radar interferometry performance for ground subsidence monitoring due to underground mining. Earth Planets Space 61:733–745.  https://doi.org/10.1186/BF03353180
  21. Ng AHM, Ge LL, Li XJ (2015) Assessments of land subsidence in the Gippsland Basin of Australia using ALOS PALSAR data. Remote Sens Environ 159:86–101.  https://doi.org/10.1016/j.rse.2014.12.003 CrossRefGoogle Scholar
  22. Peng SS, Ma WM, Zhong WL (1992) Surface subsidence engineering. Society for Mining, Metallurgy, and Exploration, ColoradoGoogle Scholar
  23. Perski Z, Hanssen R, Wojcik A, Tomasz W (2009) InSAR analyses of terrain deformation near the Wieliczka Salt Mine, Poland. Eng Geol 106(1):58–67.  https://doi.org/10.1016/j.enggeo.2009.02.014 CrossRefGoogle Scholar
  24. Samsonov S, d’Oreye N, Smets B (2013) Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method. Int J Appl Earth Obs Geoinf 23:142–154.  https://doi.org/10.1016/j.jag.2012.12.008 CrossRefGoogle Scholar
  25. Tough RJA, Blacknell D, Quegan S (1995) A statistical description of polarimetric and interferometric synthetic aperture radar. Proc R Soc Lond A 449:567–589.  https://doi.org/10.1098/rspa.1995.0059 CrossRefGoogle Scholar
  26. Xu B, Li ZW, Wang QJ, Jiang M, Zhu JJ, Ding XL (2014) A refined strategy for removing composite errors of SAR interferogram. IEEE Geosci Remote Sens Lett 11(1):143–147.  https://doi.org/10.1109/LGRS.2013.2250903 CrossRefGoogle Scholar
  27. Yang ZF, Li ZW, Zhu JJ, Hu J, Wang YJ, Chen GL (2016) InSAR-based model parameter estimation of probability integral method and its application for predicting mining-induced horizontal and vertical displacements. IEEE Trans Geosci Remote Sens 54(8):4818–4832.  https://doi.org/10.1109/TGRS.2016.2551779 CrossRefGoogle Scholar
  28. Yang ZF, Li ZW, Zhu JJ, Preusse A, Yi HW, Wang YJ, Papst M (2017a) An extension of the InSAR-based probability integral method and its application for predicting 3-D mining-induced displacements under different extraction conditions. IEEE Trans Geosci Remote Sens 55(7):3835–3845.  https://doi.org/10.1109/TGRS.2017.2682192
  29. Yang Z, Li Z, Zhu J, Yi H, Hu J, Feng G (2017b) Deriving dynamic subsidence of coal mining areas using InSAR and logistic model. Remote Sens 9:125.  https://doi.org/10.3390/rs9020125
  30. Zebker HA, Villasenor J (1992) Decorrelation in interferometric radar echoes. IEEE Trans Geosci Remote Sens 30(5):950–959.  https://doi.org/10.1109/36.175330 CrossRefGoogle Scholar
  31. Zhang L, Lu Z, Ding XL, Jung HS, Feng GC, Lee CW (2012) Mapping ground surface deformation using temporarily coherent point SAR interferometry: application to Los Angeles Basin. Remote Sens Environ 117:429–439.  https://doi.org/10.1016/j.rse.2011.10.020 CrossRefGoogle Scholar
  32. Zhao R, Li ZW, Feng GC, Wang QJ, Hu J (2016) Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: with emphasis on climatic factors modeling. Remote Sens Environ 184:276–287.  https://doi.org/10.1016/j.rse.2016.07.019 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Geosciences and Info-PhysicsCentral South UniversityChangshaChina

Personalised recommendations