Advertisement

Journal of Geodesy

, Volume 92, Issue 4, pp 401–413 | Cite as

Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers

Original Article

Abstract

Vertical total electron content (VTEC) parameters estimated using global navigation satellite system (GNSS) data are of great interest for ionosphere sensing. Satellite differential code biases (SDCBs) account for one source of error which, if left uncorrected, can deteriorate performance of positioning, timing and other applications. The customary approach to estimate VTEC along with SDCBs from dual-frequency GNSS data, hereinafter referred to as DF approach, consists of two sequential steps. The first step seeks to retrieve ionospheric observables through the carrier-to-code leveling technique. This observable, related to the slant total electron content (STEC) along the satellite–receiver line-of-sight, is biased also by the SDCBs and the receiver differential code biases (RDCBs). By means of thin-layer ionospheric model, in the second step one is able to isolate the VTEC, the SDCBs and the RDCBs from the ionospheric observables. In this work, we present a single-frequency (SF) approach, enabling the joint estimation of VTEC and SDCBs using low-cost receivers; this approach is also based on two steps and it differs from the DF approach only in the first step, where we turn to the precise point positioning technique to retrieve from the single-frequency GNSS data the ionospheric observables, interpreted as the combination of the STEC, the SDCBs and the biased receiver clocks at the pivot epoch. Our numerical analyses clarify how SF approach performs when being applied to GPS L1 data collected by a single receiver under both calm and disturbed ionospheric conditions. The daily time series of zenith VTEC estimates has an accuracy ranging from a few tenths of a TEC unit (TECU) to approximately 2 TECU. For 73–96% of GPS satellites in view, the daily estimates of SDCBs do not deviate, in absolute value, more than 1 ns from their ground truth values published by the Centre for Orbit Determination in Europe.

Keywords

Global navigation satellite system (GNSS) Vertical total electron content (VTEC) Satellite differential code biases (SDCBs) Carrier-to-code leveling (CCL) Precise point positioning (PPP) Thin-layer ionospheric model 

Notes

Acknowledgements

This work was partially funded by the National key Research Program of China “Collaborative Precision Positioning Project” (No. 2016YFB0501900), the National Natural Science Foundation of China (Nos. 41604031, 41774042) and Natural Science Foundation of Jiangxi Province (No. 20161BAB213087). The first author is supported by the CAS Pioneer Hundred Talents Program. All this support is gratefully acknowledged.

References

  1. Artru J, Ducic V, Kanamori H, Lognonné P, Murakami M (2005) Ionospheric detection of gravity waves induced by tsunamis. Geophys J Int 160:840–848CrossRefGoogle Scholar
  2. Banville S, Collins P, Zhang W, Langley RB (2014) Global and regional ionospheric corrections for faster PPP convergence. Navigation 61:115–124CrossRefGoogle Scholar
  3. Brunini C, Azpilicueta F (2010) GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geodesy 84:293–304CrossRefGoogle Scholar
  4. Brunini C, Azpilicueta FJ (2009) Accuracy assessment of the GPS-based slant total electron content. J Geodesy 83:773–785CrossRefGoogle Scholar
  5. Brunini C, Camilion E, Azpilicueta F (2011) Simulation study of the influence of the ionospheric layer height in the thin layer ionospheric model. J Geodesy 85:637–645CrossRefGoogle Scholar
  6. Brunini C, Meza A, Gende M, Azpilicueta F (2008) South American regional ionospheric maps computed by GESA: a pilot service in the framework of SIRGAS. Adv Space Res 42:737–744CrossRefGoogle Scholar
  7. Choi K, Bilich A, Larson KM, Axelrad P (2004) Modified sidereal filtering: implications for high-rate GPS positioning. Geophys Res Lett 31:L22608. doi: 10.1029/2004GL021621
  8. Choi KH, Lee JY, Kim HS, Kim J, Lee HK (2012) Simultaneous estimation of ionospheric delays and receiver differential code bias by a single GPS station. Meas Sci Technol 23:065002CrossRefGoogle Scholar
  9. Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geodesy 81:111–120CrossRefGoogle Scholar
  10. Cohen CE, Penm B, Parkinson BW (1992) Estimation of absolute ionospheric delay exclusively through single-frequency GPS measurements. In: Proceedings of the 5th international technical meeting of the satellite division of the institute of navigation (ION GPS 1992), pp 325–330Google Scholar
  11. Dautermann T, Calais E, Haase J, Garrison J (2007) Investigation of ionospheric electron content variations before earthquakes in southern California, 2003–2004. J Geophy Res Solid Earth 112:B02106. doi: 10.1029/2006JB004447 CrossRefGoogle Scholar
  12. Dettmering D, Limberger M, Schmidt M (2014) Using DORIS measurements for modeling the vertical total electron content of the Earth’s ionosphere. J Geodesy 88:1131–1143CrossRefGoogle Scholar
  13. Dyrud L, Jovancevic A, Brown A, Wilson D, Ganguly S (2008) Ionospheric measurement with GPS: receiver techniques and methods. Radio Sci 43:RS6002. doi: 10.1029/2007RS003770
  14. Feltens J (2003) The international GPS service (IGS) ionosphere working group. Adv Space Res 31:635–644CrossRefGoogle Scholar
  15. Gulyaeva TL, Arikan F, Hernandez-Pajares M, Veselovsky I (2014) North–south components of the annual asymmetry in the ionosphere. Radio Sci 49:485–496CrossRefGoogle Scholar
  16. Hernández-Pajares M, Juan J, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Solar Terr Phys 61:1237–1247CrossRefGoogle Scholar
  17. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geodesy 83:263–275CrossRefGoogle Scholar
  18. Komjathy A et al (2012) Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: the Tohoku case study. Earth Planets Space 64:1287–1294CrossRefGoogle Scholar
  19. Komjathy A, Sparks L, Wilson BD, Mannucci AJ (2005) Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci 40:RS6006. doi: 10.1029/2005RS003279
  20. Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5:12–28CrossRefGoogle Scholar
  21. Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying. Wiley, New YorkCrossRefGoogle Scholar
  22. Li Z, Yuan Y, Wang N, Hernandez-Pajares M, Huo X (2015) SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J Geodesy 89:331–345CrossRefGoogle Scholar
  23. Liu Z, Gao Y (2004) Ionospheric TEC predictions over a local area GPS reference network. GPS Solut 8:23–29CrossRefGoogle Scholar
  24. Lognonné P et al (2006) Ground-based GPS imaging of ionospheric post-seismic signal. Planet Space Sci 54:528–540CrossRefGoogle Scholar
  25. Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33:565–582CrossRefGoogle Scholar
  26. Mannucci AJ, Wilson BD, Edwards CD (1993) A new method for monitoring the Earth’s ionospheric total electron content using the GPS global network. In: Proceedings of ION GPS-93, the 6th international technical meeting of the satellite division of The Institute of Navigation, Salt Lake City, UT, 22–24 September 1993, pp 1323–1332Google Scholar
  27. Montenbruck O, Hauschild A, Steigenberger P (2014) Differential code bias estimation using multi-GNSS observations and global ionosphere maps. Navigation 61:191–201CrossRefGoogle Scholar
  28. Park J, von Frese RR, Grejner-Brzezinska DA, Morton Y, Gaya-Pique LR (2011) Ionospheric detection of the 25 May 2009 North Korean underground nuclear test. Geophys Res Lett 38:L22802. doi: 10.1029/2011GL049430 CrossRefGoogle Scholar
  29. Sardon E, Rius A, Zarraoa N (1994a) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci 29:577–586CrossRefGoogle Scholar
  30. Sardon E, Rius A, Zarraoa N (1994b) Ionospheric calibration of single frequency VLBI and GPS observations using dual GPS data. J Geodesy 68:230–235Google Scholar
  31. Schüler T, Oladipo OA (2013) Single-frequency GNSS retrieval of vertical total electron content (VTEC) with GPS L1 and Galileo E5 measurements. J Space Weather Space Clim 3:A11CrossRefGoogle Scholar
  32. Schüler T, Oladipo OA (2014) Single-frequency single-site VTEC retrieval using the NeQuick2 ray tracer for obliquity factor determination. GPS Solut 18:115–122CrossRefGoogle Scholar
  33. Sezen U, Arikan F, Arikan O, Ugurlu O, Sadeghimorad A (2013) Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC. Space Weather 11:297–305CrossRefGoogle Scholar
  34. Stephens P, Komjathy A, Wilson B, Mannucci A (2011) New leveling and bias estimation algorithms for processing COSMIC/FORMOSAT-3 data for slant total electron content measurements. Radio Sci 46:RS0D10. doi: 10.1029/2010RS004588
  35. Wang N, Yuan Y, Li Z, Montenbruck O, Tan B (2016) Determination of differential code biases with multi-GNSS observations. J Geodesy 90:209–228CrossRefGoogle Scholar
  36. Xia R (1992) Determination of absolute ionospheric error using a single frequency GPS receiver. In: Proceedings of the 5th international technical meeting of the satellite division of the institute of navigation (ION GPS 1992), pp 483–490Google Scholar
  37. Yao Y, Chen P, Zhang S, Chen J (2013) A new ionospheric tomography model combining pixel-based and function-based models. Adv Space Res 52:614–621CrossRefGoogle Scholar
  38. Zumberge J, Heflin M, Jefferson D, Watkins M, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102:5005–5017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and GeophysicsChinese Academy of SciencesWuhanChina
  2. 2.Global Navigation Satellite System (GNSS) Research CentreCurtin UniversityPerthAustralia
  3. 3.Geoscience and Remote SensingDelft University of TechnologyDelftThe Netherlands

Personalised recommendations