Skip to main content
Log in

Stochastic modeling for time series InSAR: with emphasis on atmospheric effects

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Despite the many applications of time series interferometric synthetic aperture radar (TS-InSAR) techniques in geophysical problems, error analysis and assessment have been largely overlooked. Tropospheric propagation error is still the dominant error source of InSAR observations. However, the spatiotemporal variation of atmospheric effects is seldom considered in the present standard TS-InSAR techniques, such as persistent scatterer interferometry and small baseline subset interferometry. The failure to consider the stochastic properties of atmospheric effects not only affects the accuracy of the estimators, but also makes it difficult to assess the uncertainty of the final geophysical results. To address this issue, this paper proposes a network-based variance–covariance estimation method to model the spatiotemporal variation of tropospheric signals, and to estimate the temporal variance–covariance matrix of TS-InSAR observations. The constructed stochastic model is then incorporated into the TS-InSAR estimators both for parameters (e.g., deformation velocity, topography residual) estimation and uncertainty assessment. It is an incremental and positive improvement to the traditional weighted least squares methods to solve the multitemporal InSAR time series. The performance of the proposed method is validated by using both simulated and real datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Agram PS, Jolivet R, Riel B, Lin YN, Simons M, Hetland E, Doin MP, Lassere C (2013) New radar interferometric time series analysis toolbox released. Eos Trans AGU 94(7):69–76

    Article  Google Scholar 

  • Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Probl 14:R1–R54

    Article  Google Scholar 

  • Bekaert DPS, Hooper A, Wright TJ (2015a) A spatially variable power law tropospheric correction technique for InSAR data. J Geophys Res 120(2):1345–1356. doi:10.1002/2014JB011558

    Article  Google Scholar 

  • Bekaert DPS, Walters RJ, Wright TJ, Hooper AJ, Parker DJ (2015) Statistical comparison of InSAR tropospheric correction techniques. Remote Sens Environ 170:40–47. doi:10.1016/j.rse.2015.08.035

    Article  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383. doi:10.1109/TGRS.2002.803792

    Article  Google Scholar 

  • Cao YM, Li ZW, Wei JC, Zhan WJ, Zhu JJ, Wang CC (2014) A novel method for determining the anisotropy of geophysical parameters: unit range variation increment (URVI). Appl Geophys 11(3):340–349. doi:10.1007/s11770-014-0448-y

    Article  Google Scholar 

  • Chaussard E, Wdowinski S, Cabral-Cano E, Amelung F (2014) Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens Environ 140:94–106. doi:10.1016/j.rse.2013.08.038

    Article  Google Scholar 

  • Ding XL, Li ZW, Zhu JJ, Feng GC, Long JP (2008) Atmospheric effects on InSAR measurements and their mitigation. Sensors 8(9):5426–5448. doi:10.3390/s8095426

    Article  Google Scholar 

  • Doin MP, Lasserre C, Peltzer G, Cavalié O, Doubre C (2009) Corrections of stratified tropospheric delays in SAR interferometry: validation with global atmospheric models. J Appl Geophys 69(1):35–50

    Article  Google Scholar 

  • Emardson TR, Simons M, Webb FH (2003) Neutral atmospheric delay in interferometric synthetic aperture radar applications: statistical description and mitigation. J Geophys Res 108(B5):ETG4-1–ETG4-8. doi:10.1029/2002JB001781

    Article  Google Scholar 

  • Fattahi H, Amelung F (2015) InSAR bias and uncertainty due to the systematic and stochastic tropospheric delay. J Geophys Res 120(12):8758–8773. doi:10.1002/2015JB012419

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20. doi:10.1109/36.898661

    Article  Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49(9):3460–3470. doi:10.1109/TGRS.2011.2124465

    Article  Google Scholar 

  • Foster J, Kealy J, Cherubini T, Businger S, Lu Z, Murphy M (2013) The utility of atmospheric analyses for the mitigation of artifacts in InSAR. J Geophys Res 118(2):748–758. doi:10.1002/jgrb.50093

    Article  Google Scholar 

  • Gong WY, Meyer FJ, Liu SZ, Hanssen RF (2015) Temporal filtering of InSAR data using statistical parameters from NWP models. IEEE Trans Geosci Remote Sens 53(7):4033–4044. doi:10.1109/TGRS.2015.2389143

    Article  Google Scholar 

  • González PJ, Fernández J (2011) Error estimation in multitemporal InSAR deformation time series, with application to Lanzarote, Canary Islands. J Geophys Res 116:B10404–1–B10404–17. doi:10.1029/2011JB008412

    Article  Google Scholar 

  • Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Kluwer, Alphen aan den Rijn

    Book  Google Scholar 

  • Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35(16):96–106. doi:10.1029/2008GL034654

    Article  Google Scholar 

  • Hooper A, Zebker HA, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31(23):611–615. doi:10.1029/2004GL021737

    Article  Google Scholar 

  • Hooper A, Bekaert D, Spaans K, Arıkan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514:1–13. doi:10.1016/j.tecto.2011.10.013

    Article  Google Scholar 

  • Jolivet R, Grandin R, Lasserre C, Doin MP, Peltzer G (2011) Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophys Res Lett 38:L17311. doi:10.1029/2011GL048757

    Article  Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London

    Google Scholar 

  • Kampes B, Hanssen RF (2004) Ambiguity resolution for permanent scatterer interferometry. IEEE Trans Geosci Remote Sens 42(11):2446–2453. doi:10.1109/TGRS.2004.835222

    Article  Google Scholar 

  • Kinoshita Y, Furuya M, Hobiger T, Ichikawa R (2013) Are numerical weather model outputs helpful to reduce tropospheric delay signals in InSAR data? J Geodesy 87(3):267–277. doi:10.1007/s00190-012-0596-x

    Article  Google Scholar 

  • Knospe SHG, Jónsson S (2010) Covariance estimation for dInSAR surface deformation measurements in the presence of anisotropic atmospheric noise. IEEE Trans Geosci Remote Sens 48(4):2057–2065. doi:10.1109/TGRS.2009.2033937

    Article  Google Scholar 

  • Lanari R, Mora O, Manunta M, Mallorqui J, Berardino P, Sansosti E (2004) A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans Geosci Remote Sens 42(7):1377–1386. doi:10.1109/TGRS.2004.828196

    Article  Google Scholar 

  • Li ZW (2005) Modeling atmospheric effects on repeat-pass InSAR measurements. Ph.D. thesis, Hong Kong, Hong Kong Polytechnic University. http://hdl.handle.net/10397/2248

  • Li ZH, Muller JP, Cross P, Fielding EJ (2005) Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate resolution imaging spectroradiometer (MODIS), and InSAR integration. J Geophys Res 110(B3):B03410–1. doi:10.1029/2004JB003446

    Article  Google Scholar 

  • Li ZW, Xu WB, Feng GC, Hu J, Wang CC, Ding XL, Zhu JJ (2012) Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model. Geophys J Int 189(2):898–910. doi:10.1111/j.1365-246X.2012.05432.x

    Article  Google Scholar 

  • Li ZW, Zhao R, Hu J, Wen LX, Feng GC, Zhang ZY, Wang QJ (2015) InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils. Sci Rep 5:15542. doi:10.1038/srep15542

    Article  Google Scholar 

  • Massonnet D, Rabaute T (1993) Radar interferometry: limits and potential. IEEE Trans Geosci Remote Sens 32(2):455–464. doi:10.1109/36.214922

  • Ng AHM, Ge LL, Li XJ, Zhang K (2012) Monitoring ground deformation in Beijing, China with persistent scatterer SAR interferometry. J Geodesy 86(6):375–392. doi:10.1007/s00190-011-0525-4

    Article  Google Scholar 

  • Rocca F (2007) Modeling interferogram stacks. IEEE Trans Geosci Remote Sens 45(10):3289–3299. doi:10.1109/TGRS.2007.902286

    Article  Google Scholar 

  • Williams S, Bock Y, Fang P (1998) Integrated satellite interferometry: tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. J Geophys Res 103(B11):27051–27067

    Article  Google Scholar 

  • Xu WB, Li ZW, Ding XL, Zhu JJ (2011) Interpolating atmospheric water vapor delay by incorporating terrain elevation information. J Geodesy 85(9):555–564. doi:10.1007/s00190-011-0456-0

    Article  Google Scholar 

  • Yang ZF, Li ZW, Zhu JJ, Yi HW, Hu J (2017) Deriving dynamic subsidence of coal mining areas using InSAR and logistic model. Remote Sens 9(2):125. doi:10.3390/rs9020125

    Article  Google Scholar 

  • Zebker HA, Rosen PA, Hensley S (1997) Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J Geophys Res 102:7547–7563. doi:10.1029/96JB03804

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 41474007, 41404013) and the Doctoral Innovation Foundation of Central South University (2015zzts068), and the SAR images were provided by WInSAR and the European Space Agency (ESA) Cat-1 18234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Li, Z., Wei, J. et al. Stochastic modeling for time series InSAR: with emphasis on atmospheric effects. J Geod 92, 185–204 (2018). https://doi.org/10.1007/s00190-017-1055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1055-5

Keywords

Navigation