Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers


In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–386

    Google Scholar 

  2. Bizouard C, Gambis D (2011) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2008. IERS notice.

  3. Boehm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):L07304

    Article  Google Scholar 

  4. Cameron A (2015) New BeiDou TMBOC signal tracked; similar to future GPS L1C structure. GPSWorld website. Accessed 12 Jan 2017

  5. CSNO (2012) BeiDou navigation satellite system signal in space interface control document. China Satellite Navigation Office

  6. Davis G, Moreau M, Carpenter R, Bauer F (2002) GPS-based navigation and orbit determination for the AMSAT AO-40 satellite. In: Proceedings of AIAA guidance, navigation, and control conference and exhibition

  7. Dow J, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198

    Article  Google Scholar 

  8. Ebinuma T, Unwin M, Myatt R, Rooney E, Hashida Y, Garutti A (2004) GEO GPS receiver demonstration on a galileo system test bed satellite. In: Proceedings of the 17th international technical meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), pp 2721–2727

  9. Förste C, Bruinsma S, Shako R, Marty J, Flechtner F, Abrikosov O, Dahle C, Lemoine J, Neumayer K, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6-A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophys Res Abstr 13:EGU2011-3242-2

    Google Scholar 

  10. Ge M, Zhang H, Jia X, Song S, Wickert J (2012) What is achievable with current COMPASS constellation? GPS World 1:29–35

    Google Scholar 

  11. Geng J, Shi C, Zhao Q, Ge M, Liu J (2008) Integrated adjustment of LEO and GPS in precision orbit determination. In: VI Hotine–Marussi symposium on theoretical and computational geodesy. Springer, Berlin, pp 133–137

  12. Guo R, Hu X, Tang B, Huang Y, Liu L, Cheng L, He F (2010) Precise orbit determination for geostationary satellites with multiple tracking techniques. Chin Sci Bull 55(8):687–692

    Article  Google Scholar 

  13. He L, Ge M, Wang J, Wickert J, Schuh H (2013) Experimental study on the precise orbit determination of the BeiDou navigation satellite system. Sensors 13(3):2911–2928

    Article  Google Scholar 

  14. He F, Zhou S, Hu X, Zhou J, Liu L, Guo R, Li X, Wu S (2014) Satellite-station time synchronization information based real-time orbit error monitoring and correction of navigation satellite in Beidou System. Sci China Phys Mech Astron 57(7):1395–1403

    Article  Google Scholar 

  15. Huang Y, Hu X, Zhang X, Jiang D, Guo R, Wang H, Shi S (2011) Improvement of orbit determination for geostationary satellites with VLBI tracking. Chin Sci Bull 56(26):2765–2772

    Article  Google Scholar 

  16. König R, Reigber C, Zhu S (2005) Dynamic model orbits and earth system parameters from combined GPS and LEO data. Adv Space Res 36(3):431–437

    Article  Google Scholar 

  17. Langley R (1999) Dilution of precision. GPS World 10(5):52–59

    Google Scholar 

  18. Liu J, Ge M (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2):603–609

    Article  Google Scholar 

  19. Lou Y, Liu Y, Shi C, Wang B, Yao X, Zheng F (2016) Precise orbit determination of BeiDou constellation: method comparison. GPS Solut 20(2):259–268

    Article  Google Scholar 

  20. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415

    Article  Google Scholar 

  21. Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222

    Article  Google Scholar 

  22. Montenbruck O, Steigenberger P, Khachikyan R, Weber G, Langley R, Mervart L, Hugentobler U (2014) IGS-MGEX: preparing the ground for multi-constellation GNSS science. Inside GNSS 9(1):42–49

    Google Scholar 

  23. Petit G, Luzum B (2010) IERS conventions, IERS Technical Note No.36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main

  24. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494

    Article  Google Scholar 

  25. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The use of artificial satellites for geodesy. Am Geophys Union Geophys Monogr Ser 15:247–251

    Google Scholar 

  26. Shi C, Zhao Q, Li M, Tang W, Hu Z, Lou Y, Zhang H, Niu X, Liu J (2012) Precise orbit determination of BeiDou Satellites with precise positioning. Sci China Earth Sci 55(7):1079–1086

    Article  Google Scholar 

  27. SMC/GP (2004) Navstar global positioning system interface specification. Space and Missile Systems Centre and Navstar GPS Joint Program Office

  28. Standish E (1998) JPL planetary and lunar ephemerides DE405/LE405. JPL IOM 312. F-98-048

  29. Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of compass GEO and IGSO satellites. J Geod 87(6):515–525

    Article  Google Scholar 

  30. Tsujii T, Rizos C, Wang J, Dai L, Roberts C, Harigae M (2001) A navigation/positioning service based on pseudolites installed on stratospheric airships. In: 5th International symposium on satellite navigation technology and applications, 2001. Canberra, pp 24–27

  31. Unwin, M, Van Steenwijk V, Blunt P, Hashida Y, Kowaltschek S, Nowak L (2013) Navigating above the GPS constellation—preliminary results from the SGR-GEO on GIOVE-A. In: Proceedings of the 26th international technical meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, pp 16–20

  32. Wu J, Wu S, Hajj G, Bertiger W, Lichten S (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18(2):91–98

    Google Scholar 

  33. Yang Y (2010) Progress, contribution and challenges of compass/Beidou satellite navigation system. Acta Geod Cartogr Sin 39(1):1–6

    Google Scholar 

  34. Zhang R, Zhang Q, Huang G, Wang L, Qu W (2015) Impact of tracking station distribution structure on BeiDou satellite orbit determination. Adv Space Res 56(10):2177–2187

    Article  Google Scholar 

  35. Zhao Q, Guo J, Li M, Qu L, Hu Z, Shi C, Liu J (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geod 87(5):475–486

    Article  Google Scholar 

  36. Zhu S, Reigber C, König R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data. J Geod 78(1–2):103–108

    Google Scholar 

Download references


This work is supported by the National Natural Science Funds of China (41622401, 41574023, 41374031). The first author is financially supported by the China Scholarship Council (CSC) for his study at the German Research Centre for Geosciences (GFZ).

Author information



Corresponding author

Correspondence to Bofeng Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Li, B., Ge, M. et al. Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers. J Geod 91, 1447–1460 (2017).

Download citation


  • Precise orbit determination (POD)
  • BeiDou Navigation Satellite System (BDS)
  • Simulated GNSS observation
  • MEO-onboard GNSS observations