A two-step ionospheric modeling algorithm considering the impact of GLONASS pseudo-range inter-channel biases

Original Article
  • 226 Downloads

Abstract

The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%.

Keywords

GLONASS Ionospheric modeling Pseudo-range inter-frequency bias 

References

  1. Al-Shaery A, Zhang S, Rizos C (2013) An enhanced calibration method of GLONASS inter-channel bias for GNSS RTK. GPS Solut 17(2):165–173CrossRefGoogle Scholar
  2. Arikan F, Nayir H, Sezen U et al (2008) Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Sci. doi:10.1029/2007rs003785
  3. Bassiri S, Hajj GA (1992) Modeling the global positioning system signal propagation through the ionosphere. Telecommunications and Data Acquisition Progress Report 42-110: 92-103, NASA Jet Propulsion Laboratory, Caltech, PasadenaGoogle Scholar
  4. Bilitza D, Reinisch BW (2008) International reference ionosphere 2007: improvements and new parameters. Adv Space Res 42(4):599–609CrossRefGoogle Scholar
  5. Camargo PO, Monico JFG, Ferreira LDD (2000) Application of ionospheric corrections in the equatorial region for L1 GPS users. Earth Planets Space 52(11):1083–1089CrossRefGoogle Scholar
  6. Chuang S, Wenting Y, Weiwei S et al (2013) GLONASS pseudo-range inter-channel biases and their effects on combined GPS/GLONASS precise point positioning. GPS Solut 17(4):439–451CrossRefGoogle Scholar
  7. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198CrossRefGoogle Scholar
  8. Håkansson M, Jensen ABO, Horemuz M et al (2016) Review of code and phase biases in multi-GNSS positioning. GPS Solut. doi:10.1007/s10291-016-0572-7
  9. Heise S, Stolle C, Schlüter S et al (2005) Differential code bias of GPS receivers in low earth orbit: an assessment for CHAMP and SAC-C[M]//Earth Observation with CHAMP. Springer, Berlin, pp 465–470Google Scholar
  10. Hernández-Pajares M, Juan JM, Sanz J et al (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275CrossRefGoogle Scholar
  11. Hernández-Pajares M, Juan JM, Sanz J, Aragón-Ángel A, García-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85(12):887–907CrossRefGoogle Scholar
  12. Hong CK, Grejner-Brzezinska DA, Kwon JH (2008) Efficient GPS receiver DCB estimation for ionosphere modeling using satellite-receiver geometry changes. Earth Planets Space 60(11):e25–e28CrossRefGoogle Scholar
  13. Jakowski N, Heise S, Wehrenpfennig A et al (2002) GPS/GLONASS-based TEC measurements as a contributor for space weather forecas. J Atmos Solar-Terr Phys 64(5):729–735CrossRefGoogle Scholar
  14. Jee G, Lee HB, Kim YH et al (2010) Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective. J Geophys Res Space Phys. doi:10.1029/2010JA015432
  15. Jin S, Luo OF, Park P (2008) GPS observations of the ionospheric F2-layer behavior during the 20th November 2003 geomagnetic storm over South Korea. J Geod 82(12):883–892CrossRefGoogle Scholar
  16. Kim BC, Tinin MV (2011) Potentialities of multifrequency ionospheric correction in global navigation satellite systems. J Geod 85(3):159–169CrossRefGoogle Scholar
  17. Klobuchar J (1987) Ionospheric time-delay algorithm for single frequency GPS users. IEEE Trans Aerosp Electron Syst 23(3):325–331CrossRefGoogle Scholar
  18. Kozlov D, Tkachenko M, Tochilin A (2000) Statistical characterization of hardware biases in GPS + GLONASS receivers. In: Proceedings of ION GPS, pp 817–826Google Scholar
  19. Kunitsyn VE, Nesterov IA, Padokhin AM et al (2011) Ionospheric radio tomography based on the GPS/GLONASS navigation systems. J Commun Technol Electron 56(11):1269–1281CrossRefGoogle Scholar
  20. Lachapelle G, Hagglund J, Falkenberg W, Bellemare P, Casey M, Eaton M (1986) GPS land kinematic positioning experiments. In: Proceedings of fourth international geodetic symposium on satellite positioning, Austin, Texas, (1986 April 28-May 2), vol 2, pp 1327–1344Google Scholar
  21. Lanyi GE, Roth T (1988) A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci. 23(4):483–492CrossRefGoogle Scholar
  22. Liu L, Wan W, Ning B, Pirog OM, Kurkin VI (2006) Solar activity variations of the ionospheric peak electron density. J Geophys Res 111(8):A08304. doi:10.1029/2006JA011598 Google Scholar
  23. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS derived ionospheric total electron content measurements. Radio Sci 33(3):565–583CrossRefGoogle Scholar
  24. Schaer S (1999) Mapping and Predicting the Earth’s Ionosphere Using the global positioning system. Ph.D. dissertation, Bern: The University of BernGoogle Scholar
  25. Schunk RW, Scherliess L, Sojka JJ et al (2004) Global assimilation of ionospheric measurements (GAIM). Radio Sci. doi:10.1029/2002RS002794
  26. Tsujii T, Harigae M, Inagaki T et al (2000) Flight tests of GPS/GLONASS precise positioning versus dual frequency KGPS profile. Earth Planets Space 52(10):825–829CrossRefGoogle Scholar
  27. Wanninger L, Wallstab-Freitag S (2007) Combined processing of GPS, GLONASS, and SBAS code phase and carrier phase measurements. In: Proceedings of ION GNSS, MLA, pp 866–875Google Scholar
  28. Wanninger L (2012) Carrier-phase inter-frequency biases of GLONASS receivers. J Geod 86(2):139–148CrossRefGoogle Scholar
  29. Wild U (1994) Ionosphere and geodetic satellite systems: permanent GPS tracking data for modeling and monitoring. Geod Geophys Arb Schweiz 48:48Google Scholar
  30. Yamanda H, Takasu T, Kubo N, Yasuda A (2010) Evaluation and calibration of receiver inter-channel biases for RTK-GPS/GLONASS. In: Proceedings of ION GNSS, pp 1580–1587Google Scholar
  31. Zinoviev AE (2005) Using GLONASS in combined GNSS receivers: current status. In: Proceedings of ION GNSS, pp. 1046–1057Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Rui Zhang
    • 1
    • 6
  • Yi-bin Yao
    • 2
  • Yue-ming Hu
    • 1
    • 4
    • 5
  • Wei-wei Song
    • 3
  1. 1.College of Natural Resources and EnvironmentSouth China Agricultural UniversityGuangzhouChina
  2. 2.School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  3. 3.Research Center of GNSSWuhan UniversityWuhanChina
  4. 4.Guangdong Province Key Laboratory for Land Use and ConsolidationGuangzhouChina
  5. 5.Guangdong Province Engineering Research Center for Land Information TechnologyGuangzhouChina
  6. 6.Key Laboratory of the Ministry of Land and Resources for Construction Land TransformationGuangzhouChina

Personalised recommendations