Journal of Geodesy

, Volume 91, Issue 11, pp 1383–1397 | Cite as

A method for scintillation characterization using geodetic receivers operating at 1 Hz

  • J. M. JuanEmail author
  • A. Aragon-Angel
  • J. Sanz
  • G. González-Casado
  • A. Rovira-Garcia
Original Article


Ionospheric scintillation produces strong disruptive effects on global navigation satellite system (GNSS) signals, ranging from degrading performances to rendering these signals useless for accurate navigation. The current paper presents a novel approach to detect scintillation on the GNSS signals based on its effect on the ionospheric-free combination of carrier phases, i.e. the standard combination of measurements used in precise point positioning (PPP). The method is implemented using actual data, thereby having both its feasibility and its usefulness assessed at the same time. The results identify the main effects of scintillation, which consist of an increased level of noise in the ionospheric-free combination of measurements and the introduction of cycle-slips into the signals. Also discussed is how mis-detected cycle-slips contaminate the rate of change of the total electron content index (ROTI) values, which is especially important for low-latitude receivers. By considering the effect of single jumps in the individual frequencies, the proposed method is able to isolate, over the combined signal, the frequency experiencing the cycle-slip. Moreover, because of the use of the ionospheric-free combination, the method captures the diffractive nature of the scintillation phenomena that, in the end, is the relevant effect on PPP. Finally, a new scintillation index is introduced that is associated with the degradation of the performance in navigation.


Scintillation Ionospheric irregularities Global navigation satellite system (GNSS) High-accuracy navigation Cycle-slip detection Scintillation indices 



The authors acknowledge the use of data from the International GNSS Service and from the Joint Research Centre.


  1. Aarons J (1982) Global morphology of ionospheric scintillations. Proc IEEE 70(4):360–378. doi: 10.1109/PROC.1982.12314 CrossRefGoogle Scholar
  2. Aarons J (1993) The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence. Space Sci Rev 63(3):209–243. doi: 10.1007/BF00750769 CrossRefGoogle Scholar
  3. Banville S, Langley RB, Saito S, Yoshihara T (2010) Handling cycle slips in gps data during ionospheric plasma bubble events. Radio Sci 45(6):1–14. doi: 10.1029/2010RS004415 CrossRefGoogle Scholar
  4. Basu S, Basu S (1989) Scintillation technique for probing ionospheric irregularities. In: Liu CH (ed) World Ionospheric and termospheric studies (WITS) handbook, vol 2. Urbana, Illinois, pp 128–136Google Scholar
  5. Béniguel Y, Romano V, Alfonsi L, Aquino M, Bourdillon A, Cannon P, Franceschi GD, Dubey S, Forte B, Gherm V, Jakowski N, Materassi M, Noack T, Pozoga M, Rogers N, Spalla P, Strangeways H, Warrington EM, Wernik A, Wilken V, Zernov N (2009) Ionospheric scintillation monitoring and modelling. Ann Geophys 52(3–4).
  6. Beutler G, Rothacher M, Schaer S, Springer T, Kouba J, Neilan R (1999) The international GPS service (IGS): an interdisciplinary service in support of Earth sciences. Adv Space Res 23(4):631–653. doi: 10.1016/S0273-1177(99)00160-X CrossRefGoogle Scholar
  7. Blewitt G (1990) An automatic editing algorithm for gps data. Geophys Res Lett 17(3):199–202. doi: 10.1029/GL017i003p00199 CrossRefGoogle Scholar
  8. Briggs B, Parkin I (1963) On the variation of radio star and satellite scintillations with zenith angle. J Atmos Terr Phys 25(6):339–366. doi: 10.1016/0021-9169(63)90150-8.
  9. Carrano C, Groves KM (2007) tec gradients and fluctuations at low latitudes measured with high data rate GPS receivers. In: Proceedings of ION 2007, Cambridge MA (USA), pp 156–163.
  10. Carrano C, Groves KM, McNeil WJ, Doherty PH (2013) direct measurement of the residual in the ionosphere-free linear combination during scintillation. In: Proceedings of ION ITM 2013, San Diego, CA (USA), pp 585–596.
  11. Cervera MA, Thomas RM (2006) Latitudinal and temporal variation of equatorial ionospheric irregularities determined from gps scintillation observations. Ann Geophys 24(12):3329–3341. doi: 10.5194/angeo-24-3329-2006.
  12. Crawford F (1968) Berkeley Physics Course, vol 3. Waves. McGraw-Hill, New York, USAGoogle Scholar
  13. Forte B (2005) Optimum detrending of raw GPS data for scintillation measurements at auroral latitudes. J Atmos Sol Terr Phys 67(12):1100–1109. doi: 10.1016/j.jastp.2005.01.011.
  14. Humphreys T, Psiaki M, Kintner PJ, BM Ledvina (2005) GPS Carrier Tracking Loop Performance in the Presence of Ionospheric Scintillation. In: Proceedings of ION GNSS 2005, Long Beach, CA (USA), pp 156–167.
  15. International GNSS Service Products (2014).
  16. Jacobsen K (2014) The impact of different sampling rates and calculation time intervals on ROTI values. J Space Weather Space Clim 4:A33. doi: 10.1051/swsc/2014031 CrossRefGoogle Scholar
  17. Jacobsen K, Andalsvik Y (2016) Overview of the 2015 St. Patricks day storm and its consequences for RTK and PPP positioning in Norway. J Space Weather Space Clim 6:A9. doi: 10.1051/swsc/2016004 CrossRefGoogle Scholar
  18. Kintner P, Humphreys T, Hinks J (2009) How to survive the next solar maximum. Inside GNSS (July/August 2009) 4(4):22–30.
  19. Paznukhov VV, Carrano CS, Doherty PH, Groves KM, Caton RG, Valladares CE, Seemala GK, Bridgwood CT, Adeniyi J, Amaeshi LLN, Damtie B, D’Ujanga Mutonyi F, Ndeda JOH, Baki P, Obrou OK, Okere B, Tsidu GM (2012) Equatorial plasma bubbles and l-band scintillations in Africa during solar minimum. Ann Geophys 30(4):675–682. doi: 10.5194/angeo-30-675-2012.
  20. Pi X, Iijima BA, Lu W (2014) Effects of ionospheric scintillation on GNSS-based positioning. In: Proceedings of ION GNSS+ 2014, Tampa, Florida (USA), pp 1090–1100.
  21. Pi X, Mannucci AJ, Lindqwister UJ, Ho CM (1997) Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys Res Lett 24(18):2283–2286. doi: 10.1029/97GL02273 CrossRefGoogle Scholar
  22. Rino CL (1979) A power law phase screen model for ionospheric scintillation: 1. weak scatter. Radio Science 14(6):1135–1145. doi: 10.1029/RS014i006p01135 CrossRefGoogle Scholar
  23. Sanz J, Juan J, Hernández-Pajares M (2013) GNSS data processing, vol I: fundamentals and algorithms. ESA communications, ESTEC TM-23/1, Noordwijk, the Netherlands.
  24. Sanz J, Juan J, González-Casado G, Prieto-Cerdeira R, Schlueter S, Orús R (2014) Novel ionospheric activity indicator specifically tailored for GNSS users. In: Proceedings of ION GNSS+ 2014, Tampa, Florida (USA), pp 1173–1182.
  25. Steenburgh RA, Smithtro CG, Groves KM (2008) Ionospheric scintillation effects on single frequency gps. Space Weather. doi: 10.1029/2007SW000340 Google Scholar
  26. Van Dierendonck A, Arbesser-Ratsburg B (2004) Measuring Ionospheric Scinitllation in the Equatorial Region over Africa, Including Measurements from SBAS Geostationary Satellite Signals. In: Proceedings of ION GNSS 2005, Long Beach, CA (USA), pp 316–324.
  27. Wang J, Morton Y (2015) spaced receiver array for ionospheric irregularity drift velocity estimation using multi-band GNSS signals. In: Proceedings of ION GNSS+ 2015, Tampa, Florida (USA), pp 3449–3458.
  28. Xu D, Morton Y (2015) GPS carrier parameters characterization during strong equatorial ionospheric scintillation. In: Proceedings of ION ITM 2015, Dana Point, CA (USA), pp 521–529.
  29. Xu D, Morton Y, Akos D, Walter T (2015) GPS Multi-frequency carrier phase characterization during strong equatorial ionospheric scintillation. In: Proceedings of ION GNSS+ 2015, Tampa, Florida (USA), pp 3787–3796.
  30. Yeh C, Chao-Han L (1982) Radio wave scintillations in the ionosphere. Proc IEEE 70(4):324–360. doi: 10.1109/PROC.1982.12313 CrossRefGoogle Scholar
  31. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102(B3):5005–5017. doi: 10.1029/96JB03860 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Research Group of Astronomy and Geomatics (gAGE)Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  2. 2.European Commission, Joint Research Centre (JRC)Directorate for Space, Security and MigrationIspraItaly

Personalised recommendations