Journal of Geodesy

, Volume 91, Issue 11, pp 1329–1350 | Cite as

Seasonal low-degree changes in terrestrial water mass load from global GNSS measurements

  • Thierry Meyrath
  • Tonie van Dam
  • Xavier Collilieux
  • Paul Rebischung
Original Article


Large-scale mass redistribution in the terrestrial water storage (TWS) leads to changes in the low-degree spherical harmonic coefficients of the Earth’s surface mass density field. Studying these low-degree fluctuations is an important task that contributes to our understanding of continental hydrology. In this study, we use global GNSS measurements of vertical and horizontal crustal displacements that we correct for atmospheric and oceanic effects, and use a set of modified basis functions similar to Clarke et al. (Geophys J Int 171:1–10, 2007) to perform an inversion of the corrected measurements in order to recover changes in the coefficients of degree-0 (hydrological mass change), degree-1 (centre of mass shift) and degree-2 (flattening of the Earth) caused by variations in the TWS over the period January 2003–January 2015. We infer from the GNSS-derived degree-0 estimate an annual variation in total continental water mass with an amplitude of \((3.49 \pm 0.19) \times 10^{3}\) Gt and a phase of \(70^{\circ } \pm 3^{\circ }\) (implying a peak in early March), in excellent agreement with corresponding values derived from the Global Land Data Assimilation System (GLDAS) water storage model that amount to \((3.39 \pm 0.10) \times 10^{3}\) Gt and \(71^{\circ } \pm 2^{\circ }\), respectively. The degree-1 coefficients we recover from GNSS predict annual geocentre motion (i.e. the offset change between the centre of common mass and the centre of figure) caused by changes in TWS with amplitudes of \(0.69 \pm 0.07\) mm for GX, \(1.31 \pm 0.08\) mm for GY and \(2.60 \pm 0.13\) mm for GZ. These values agree with GLDAS and estimates obtained from the combination of GRACE and the output of an ocean model using the approach of Swenson et al. (J Geophys Res 113(B8), 2008) at the level of about 0.5, 0.3 and 0.9 mm for GX, GY and GZ, respectively. Corresponding degree-1 coefficients from SLR, however, generally show higher variability and predict larger amplitudes for GX and GZ. The results we obtain for the degree-2 coefficients from GNSS are slightly mixed, and the level of agreement with the other sources heavily depends on the individual coefficient being investigated. The best agreement is observed for \(T_{20}^C\) and \(T_{22}^S\), which contain the most prominent annual signals among the degree-2 coefficients, with amplitudes amounting to \((5.47 \pm 0.44) \times 10^{-3}\) and \((4.52 \pm 0.31) \times 10^{-3}\) m of equivalent water height (EWH), respectively, as inferred from GNSS. Corresponding agreement with values from SLR and GRACE is at the level of or better than \(0.4 \times 10^{-3}\) and \(0.9 \times 10^{-3}\) m of EWH for \(T_{20}^C\) and \(T_{22}^S\), respectively, while for both coefficients, GLDAS predicts smaller amplitudes. Somewhat lower agreement is obtained for the order-1 coefficients, \(T_{21}^C\) and \(T_{21}^S\), while our GNSS inversion seems unable to reliably recover \(T_{22}^C\). For all the coefficients we consider, the GNSS-derived estimates from the modified inversion approach are more consistent with the solutions from the other sources than corresponding estimates obtained from an unconstrained standard inversion.


Surface mass redistribution GNSS inversion Terrestrial water storage Geocentre motion 



The authors want to thank two anonymous reviewers and the editor for their insightful comments and suggestions that helped to improve the manuscript. The first author is further grateful to Peter J. Clarke for providing valuable explanations concerning the modified basis functions we used for the GNSS inversion.


  1. Alsdorf DE, Rodríguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45:RG2002. doi: 10.1029/2006RG000197
  2. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res doi: 10.1002/2016JB013098
  3. Balmino G (1994) Gravitational potential harmonics from the shape of an homogeneous body. Celest Mech Dyn Astron 60(3):331–364CrossRefGoogle Scholar
  4. Bettadpur, S. (2012), UTCSR Level-2 Processing Standards Document (For Level-2 Product Release 0005), GRACE UTCSR L-2 Proc Standards Doc–RL 05, GRACE 327-742 (v 4.0), Center for Space Research, The University of Texas at AustinGoogle Scholar
  5. Blewitt G, Clarke P, Lavallée D, Nurutdinov K (2005) Application of Clebsch–Gordan coefficients and isomorphic frame transformations to invert Earth’s changing geometrical shape for continental hydrological loading and sea level’s passive response. In: A window on the future of geodesy. Springer, pp. 518–523Google Scholar
  6. Blewitt GD (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2):2103. doi: 10.1029/2002JB002082 CrossRefGoogle Scholar
  7. Blewitt GD, Clarke PJ (2003) Inversion of Earth’s changing shape to weigh sea level in static equilibrium with surface mass redistribution. J Geophys Res 108(B6):2311CrossRefGoogle Scholar
  8. Blewitt GD, Lavallée DA, Clarke PJ, Nurutdinov K (2001) A new global mode of earth deformation: seasonal cycle detected. Science 294:2342–2345CrossRefGoogle Scholar
  9. Booker D, Clarke PJ, Lavallée D (2014) Secular changes in Earth’s shape and surface mass loading derived from combinations of reprocessed global GPS networks. J Geod 88(9):839–855CrossRefGoogle Scholar
  10. Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31:L13310. doi: 10.1029/2004GL020461
  11. Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005a) Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett 33:L14405. doi: 10.1029/2005GL022964 Google Scholar
  12. Chen JL, Wilson CR, Tapley BD, Famiglietti JS, Rodell M (2005b) Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models. J Geod 79(9):532–539CrossRefGoogle Scholar
  13. Chen W, Ray J, Shen WB, Huang CL (2013) Polar motion excitations for an Earth model with frequency-dependent responses: 2. Numerical tests of the meteorological excitations. J Geophys Res doi: 10.1002/jgrb.50313
  14. Cheng M, Ries JC, Tapley BD (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res 116:B01409. doi: 10.1029/2010JB000850 Google Scholar
  15. Cheng MK, Ries JC, Tapley BD (2013) Geocenter variations from analysis of SLR data. In: Altamimi Z, Collilieux X (eds) Reference frames for applications in geosciences. Springer, pp. 19–25Google Scholar
  16. Clarke PJ, Lavallée DA, Blewitt G, van Dam TM, Wahr JM (2005) Effect of gravitational consistency and mass conservation on seasonal surface mass loading models. Geophys. Res. Lett. 32:L08306. doi: 10.1029/2005GL022441
  17. Clarke PJ, Lavallée DA, Blewitt G, van Dam T (2007) Basis functions for the consistent and accurate representation of surface mass loading. Geophys J Int 171:1–10CrossRefGoogle Scholar
  18. Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res 114(B4)Google Scholar
  19. Collilieux X, van Dam T, Ray J, Coulot D, Métivier L, Altamimi Z (2012) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod 86(1):1–14CrossRefGoogle Scholar
  20. Dill R, Dobslaw H (2013) Numerical simulations of global-scale high-resolution hydrological crustal deformations. J Geophys Res 118(9):5008–5017CrossRefGoogle Scholar
  21. Dobslaw H, Flechtner F, Bergmann-Wolf I, Dahle C, Dill R, Esselborn S, Sasgen I, Thomas M (2013) Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05. J Geophys Res 118(7):3704–3711CrossRefGoogle Scholar
  22. Dobslaw H, Bergmann-Wolf I, Dill R, Forootan E, Klemann V, Kusche J, Sasgen I (2014) Updating ESA’s earth system model for gravity mission simulation studies: 1. Model description and validation, Scientific Technical Report 14/07, Deutsches GeoForschungsZentrum GFZGoogle Scholar
  23. Dobslaw H, Bergmann-Wolf I, Dill R, Forootan E, Klemann V, Kusche J, Sasgen I (2015) The updated ESA earth system model for future gravity mission simulation studies. J Geod 89(5):505–513CrossRefGoogle Scholar
  24. Dong D, Dickey JO, Chao Y, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys Res Lett 24(15):1867–1870CrossRefGoogle Scholar
  25. Dong D, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107(B4). doi: 10.1029/2001JB000573
  26. Dong D, Yunck T, Heflin M (2003) Origin of the International Terrestrial Reference Frame. J Geophys Res 108(B4):2200. doi: 10.1029/2002JB002035
  27. Ettema J, van den Broeke MR, van Meijgaard E, van de Berg WJ, Bamber JL, Box JE, Bales RC (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys Res Lett 36:L12501. doi: 10.1029/2009GL038110
  28. Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys 10:761–797CrossRefGoogle Scholar
  29. Farrell WE (1973) Earth tides, ocean tides and tidal loading. Phil Trans R Soc Lond 274(1239):253–259CrossRefGoogle Scholar
  30. Gross RS, Blewitt G, Clarke PJ, Lavallée D (2004) Degree-2 harmonics of the Earth’s mass load estimated from GPS and Earth rotation data. Geophys Res Lett 31:L07601CrossRefGoogle Scholar
  31. Güntner A (2008) Improvement of global hydrological models using GRACE data. Surv Geophys 29:375–397. doi: 10.1007/s10712-008-9038-y CrossRefGoogle Scholar
  32. Humphrey V, Gudmundsson L, Seneviratne SI (2016) Assessing global water storage variability from GRACE: Trends, seasonal cycle, subseasonal anomalies and extremes. Surv Geophys 37(2):357–395CrossRefGoogle Scholar
  33. Jansen MJF, Gunter BC, Kusche J (2009) The impact of GRACE, GPS and OBP data on estimates of global mass redistribution. Geophys J Int 177(1):1–13CrossRefGoogle Scholar
  34. Jin SG, Hassan AA, Feng GP (2012) Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models. J Geodyn 62:40–48CrossRefGoogle Scholar
  35. Kusche J, Schrama EJO (2005a) Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data. J Geophys Res 110:B09409. doi: 10.1029/2004JB003556 CrossRefGoogle Scholar
  36. Kusche J, Schrama EJO (2005b) Mass redistribution from global GPS timeseries and GRACE gravity fields: inversion issues In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions. Springer, pp. 322–327Google Scholar
  37. Lambeck K (1988) Geophysical geodesy: the slow deformations of the earth. Oxford University Press, New YorkGoogle Scholar
  38. Lavallée DA, van Dam T, Blewitt G, Clarke PJ (2006) Geocenter motions from GPS: a unified observation model. J Geophys Res 111(B05405)Google Scholar
  39. Lavallée DA, Moore P, Clarke PJ, Petrie EJ, van Dam T, King MA (2010) J2: An evaluation of new estimates from GPS, GRACE, and load models compared to SLR. Geophys Res Lett 37:L22403. doi: 10.1029/2010GL045229 CrossRefGoogle Scholar
  40. Lettenmaier DP, Famiglietti S (2006) Water from on high. Nature 444:562–563CrossRefGoogle Scholar
  41. Li W, van Dam T, Li Z, Shen Y (2016) Annual variation detected by GPS, GRACE and loading models. Stud Geophys Geod 60:1–14CrossRefGoogle Scholar
  42. Longman IM (1962) A Green’s function for determining the deformation of the Earth under surface mass loads: 1. Theory. J Geophys Res 67(2):845–850CrossRefGoogle Scholar
  43. Longman IM (1963) A Green’s function for determining the deformation of the Earth under surface mass loads: 2. Computations and numerical results. J Geophys Res 68(2):485–496CrossRefGoogle Scholar
  44. Mendes Cerveira PJ, Hobiger T, Weber R, Schuh H (2007) Spatial spectral inversion of the changing geometry of the Earth from SOPAC GPS data. In: Tregoning P, Rizos Ch (eds) Dynamic planet. Springer, pp. 194–201Google Scholar
  45. Nastula J, Paśnicka M, Kolaczek B (2011) Comparison of the geophysical excitations of polar motion from the period: 1980.0-2009.0. Acta Geophys 59:561–577CrossRefGoogle Scholar
  46. Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds) (2010) Handbook of mathematical functions. Cambridge University Press, CambridgeGoogle Scholar
  47. Ramillien G, Famiglietti JS, Wahr J (2008) Detection of continental hydrology and glaciology signals from GRACE: a review. Surv Geophys 29:361–374. doi: 10.1007/s10712-008-9048-9 CrossRefGoogle Scholar
  48. Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1):55–64CrossRefGoogle Scholar
  49. Rebischung P, Altamimi Z, Springer T (2014) A collinearity diagnosis of the GNSS geocenter determination. J Geod 88(1):65–85CrossRefGoogle Scholar
  50. Rebischung P, Altamimi Z, Ray J, Garayt B (2016) The IGS contribution to ITRF2014. J Geod 90(7):611–630CrossRefGoogle Scholar
  51. Rietbroek R, Brunnabend S-E, Dahle C, Kusche J, Flechtner F, Schröter J, Timmermann R (2009) Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution. J Geophys Res 114:C11004. doi: 10.1029/2009JC005449 CrossRefGoogle Scholar
  52. Rietbroek R, Fritsche M, Brunnabend S-E, Daras I, Kusche J, Schröter J, Flechtner F, Dietrich R (2012) Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J Geodyn 59:64–71CrossRefGoogle Scholar
  53. Rietbroek R, Fritsche M, Dahle C, Brunnabend S-E, Behnisch M, Kusche J, Flechtner F, Schröter J, Dietrich R (2014) Can GPS-derived surface loading bridge a GRACE mission gap? Surv Geophys 35(6):1267–1283CrossRefGoogle Scholar
  54. Rodell M et al (2004) The global land data assimilation system. Bull Amer Meteor Soc 85(3):381–394CrossRefGoogle Scholar
  55. Schmidt R, Flechtner F, Meyer U, Neumayer K-H, Dahle C, König R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29:319–334. doi: 10.1007/s10712-008-9033-3 CrossRefGoogle Scholar
  56. Seo K-W, Wilson CR, Famiglietti JS, Chen JL, Rodell M (2006) Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 42:W05417. doi: 10.1029/2005WR004255
  57. Seoane L, Nastula J, Bizouard C, Gambis D (2011) Hydrological excitation of polar motion derived from GRACE gravity field solutions. Int J Geophys doi: 10.1155/2011/174396
  58. Siegismund F, Romanova V, Köhl A, Stammer D (2011) Ocean bottom pressure variations estimated from gravity, nonsteric sea surface height and hydrodynamic model simulations. J Geophys Res 116:C07021. doi: 10.1029/2010JC006727
  59. Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res 113:B08410. doi: 10.1029/2007JB005338
  60. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683):503–505CrossRefGoogle Scholar
  61. Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett 36:L15401. doi: 10.1029/2009GL038718
  62. Trupin AS, Meier MF, Wahr J (1992) Effect of melting glaciers on the Earth’s rotation and gravitational field: 1965–1984. Geophys J Int 108(1):1–15Google Scholar
  63. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229CrossRefGoogle Scholar
  64. Wei N, Fang R (2016) Assessment of aliasing errors in low-degree coefficients inferred from GPS data. Sensors 16(5):679CrossRefGoogle Scholar
  65. Williams J, Hughes CW, Tamisiea ME, Williams SDP (2014) Weighing the ocean with bottom-pressure sensors: robustness of the ocean mass annual cycle estimate. Ocean Sci 10(4):701–718CrossRefGoogle Scholar
  66. Willis JK, Chambers DP, Nerem RS (2008) Assessing the globally averaged sea level budget on seasonal to interannual timescales. J Geophys Res Oceans 113:C06015. doi: 10.1029/2007JC004517
  67. Wińska M, Nastula J, Kołaczek B (2016) Assessment of the global and regional land hydrosphere and its impact on the balance of the geophysical excitation function of polar motion. Acta Geophys 64(1):1–23CrossRefGoogle Scholar
  68. Wu X, Heflin MB (2015) A global assessment of accelerations in surface mass transport. Geophys Res Lett 42(16):6716–6723CrossRefGoogle Scholar
  69. Wu X, Argus DF, Heflin MB, Ivins ER, Webb FH (2002) Site distribution and aliasing effects in the inversion for load coefficients and geocenter motion from GPS data. Geophys Res Lett 29:2210. doi: 10.1029/2002GL016324 Google Scholar
  70. Wu X, Heflin MB, Ivins E, Argus D, Webb F (2003) Large-scale global surface mass variations inferred from GPS measurements of load-induced deformation. Geophys Res Lett 30(14):1742. doi: 10.1029/2003GL017546
  71. Wu X, Heflin MB, Ivins ER, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111:B09401. doi: 10.1029/2005JB004100 Google Scholar
  72. Wu X, Heflin MB, Schotman H, Vermeersen BLA, Dong D, Gross RS, Ivins ER, Moore AW, Owen SE (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat Geosci 3(9):642–646CrossRefGoogle Scholar
  73. Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn doi: 10.1016/j.jog.2012.01.007
  74. Yan H, Chen W, Zhu Y, Zhang W, Zhong M (2009) Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophys Res Lett 36:L13301. doi: 10.1029/2009GL038152
  75. Yan H, Chen W, Yuan L (2016) Crustal vertical deformation response to different spatial scales of GRACE and GCMs surface loading. Geophys J Int 204(1):505–516CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Faculty of Science, Technology and CommunicationUniversity of LuxembourgEsch-sur-alzetteLuxembourg
  2. 2.LASTIG LAREG, IGN, ENSG, Université Paris Diderot, Sorbonne Paris CitéParisFrance

Personalised recommendations