Skip to main content

A Global Terrestrial Reference Frame from simulated VLBI and SLR data in view of GGOS

Abstract

In this study, we assess the impact of two combination strategies, namely local ties (LT) and global ties (GT), on the datum realization of Global Terrestrial Reference Frames in view of the Global Geodetic Observing System requiring 1 mm-accuracy. Simulated Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) data over a 7 year time span was used. The LT results show that the geodetic datum can be best transferred if the precision of the LT is at least 1 mm. Investigating different numbers of LT, the lack of co-located sites on the southern hemisphere is evidenced by differences of 9 mm in translation and rotation compared to the solution using all available LT. For the GT, the combination applying all Earth rotation parameters (ERP), such as pole coordinates and UT1-UTC, indicates that the rotation around the Z axis cannot be adequately transferred from VLBI to SLR within the combination. Applying exclusively the pole coordinates as GT, we show that the datum can be transferred with mm-accuracy within the combination. Furthermore, adding artificial stations in Tahiti and Nigeria to the current VLBI network results in an improvement in station positions by 13 and 12%, respectively, and in ERP by 17 and 11%, respectively. Extending to every day VLBI observations leads to 65% better ERP estimates compared to usual twice-weekly VLBI observations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abbondanza C, Toshio C, Gross R, Heflin M, Parker J, van Dam T, Wu X (2016) JTRF2014, the 2014 JPL realization of the ITRS. In: Abstract EGU2016-10583, EGU General Assembly, Vienna, Austria, 17–22 April 2016. http://meetingorganizer.copernicus.org/EGU2016/EGU2016-10583

  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  3. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth. doi:10.1002/2016JB013098

    Google Scholar 

  4. Bar-Sever Y, Haines B, Bertiger W, Desai S, Wu S (2009) Geodetic reference antenna in space (GRASP)—a mission to enhance space-based geodesy. In: COSPAR colloquium: scientific and fundamental aspects of the Galileo program, Padua. https://ilrs.cddis.eosdis.nasa.gov/docs/GRASP_COSPAR_paper.pdf

  5. Bar-Sever Y, Haines B, Heflin M, Kuang D, Sibois A, Nerem R (2015) GRASP 2015—revised design and data analysis for a mission to improve the terrestrial reference frame. In: Abstract IUGG-4145, 26th IUGG General Assembly, Prague, Czech Republic, June 22–July 2 2015. http://tinyurl.com/gvpo3fh

  6. Biancale R (2016a) Plan for a VLBI antenna in Tahiti from 2018. In: Abstract IVS-76, 9th IVS General Meeting, Johannesburg, South Africa, March 13–19 2016. http://events.saip.org.za/contributionDisplay.py?contribId=76&sessionId=0&confId=56

  7. Biancale R (2016b) E-GRASP/Eratosthenes: a satellite mission proposal submitted to the ESA/Earth Explorer-9 call. In: Abstract First International Workshop on VLBI Observations of Near-field Targets, Bonn, Germany, October 5–6, 2016. http://www3.mpifr-bonn.mpg.de/div/meetings/vonft/pdf-files/talks/E-GRASP_Eratosthenes_Biancale

  8. Bizouard C, Gambis D (2011) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2008. http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide

  9. Bloßfeld M, Gerstl M, Hugentobler U, Angermann D, Müller H (2014) Systematic effects in LOD from SLR observations. Adv Space Res 54(6):1049–1063. doi:10.1016/j.asr.2014.06.009

    Article  Google Scholar 

  10. Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The New Vienna VLBI software VieVS. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for Planet Earth, International Association of Geodesy Symposia, vol 136. Springer, Berlin, Heidelberg, pp 1007–1011. doi:10.1007/978-3-642-20338-1_126

    Google Scholar 

  11. Boucher C, Pearlman M, Sarti P (2015) Global geodetic observatories. Adv Space Res 55(1):24–39. doi:10.1016/j.asr.2014.10.011

    Article  Google Scholar 

  12. Brockmann E (1997) Combination of solutions for geodetic and geodynamic applications of the Global Positioning System (GPS), Geodätisch-geophysikalische Arbeiten in der Schweiz, vol 55. Schweizerische Geodätische Kommission

  13. Glaser S, Fritsche M, Sośnica K, Rodríguez-Solano CJ, Wang K, Dach R, Hugentobler U, Rothacher M, Dietrich R (2015a) Validation of components of local ties. Springer, Berlin, Heidelberg. doi:10.1007/1345_2015_190

    Book  Google Scholar 

  14. Glaser S, Fritsche M, Sośnica K, Rodríguez-Solano CJ, Wang K, Dach R, Hugentobler U, Rothacher M, Dietrich R (2015b) A consistent combination of GNSS and SLR with minimum constraints. J Geod 89(12):1165–1180. doi:10.1007/s00190-015-0842-0

    Article  Google Scholar 

  15. Glaser S, Ampatzidis D, König R, Nilsson TJ, Heinkelmann R, Flechtner F, Schuh H (2016) Simulation of VLBI observations to determine a global TRF for GGOS. Springer, Berlin, Heidelberg. doi:10.1007/1345_2016_256

    Book  Google Scholar 

  16. Gross R, Beutler G, Plag HP (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Global Geodetic Observing System: Meeting the Requirements of a Global Society on a Changing Planet in 2020. Springer, Berlin, Heidelberg, pp 209–224. doi:10.1007/978-3-642-02687-4_7

  17. Hase H, Pedreros F (2014) The most remote point method for the site selection of the future GGOS network. J Geod 88(10):989–1006. doi:10.1007/s00190-014-0731-y

    Article  Google Scholar 

  18. MacMillan D, Pavlis E, Kuzmicz-Cieslak M, König D (2016) Generation of global geodetic networks for GGOS. In: Behrend D, Baver KD, Armstrong KL (eds) IVS 2016 General Meeting Proceedings New Horizons with VGOS, NASA/CP-2016-219016. https://ivscc.gsfc.nasa.gov/publications/gm2016/

  19. Nilsson T, Haas R (2010) Impact of atmospheric turbulence on geodetic very long baseline interferometry. J Geophys Res Solid Earth. doi:10.1029/2009JB006579

    Google Scholar 

  20. Nilsson T, Soja B, Karbon M, Heinkelmann R, Schuh H (2015) Application of Kalman filtering in VLBI data analysis. Earth Planets Space 67(1):1–9. doi:10.1186/s40623-015-0307-y

    Article  Google Scholar 

  21. Nothnagel et al (2015) The IVS data input to ITRF2014. International VLBI Service for Geodesy and Astrometry. GFZ Data Serv. doi:10.5880/GFZ.1.1.2015.002

  22. Otsubo T, Matsuo K, Aoyama Y, Yamamoto K, Hobiger T, Kubo-oka T, Sekido M (2016) Effective expansion of satellite laser ranging network to improve global geodetic parameters. Earth Planets Space 68(1):1–7. doi:10.1186/s40623-016-0447-8

    Article  Google Scholar 

  23. Pany A, Böhm J, MacMillan D, Schuh H, Nilsson T, Wresnik J (2011) Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. J Geod 85(1):39–50. doi:10.1007/s00190-010-0415-1

    Article  Google Scholar 

  24. Pearlman M, Degnan J, Bosworth J (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6

  25. Petit G, Luzum B (eds) (2010) IERS Conventions (2010), IERS Technical Note, vol 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany

  26. Petrachenko B, Behrend D, Gipson J, Hase H, Ma C, MacMillan D, Niell A, Nothnagel A, Zhang X (2014) VGOS Observing Plan. In: Behrend D, Baver KD, Armstrong KL (eds) VGOS: The New VLBI Network. Proceedings of the 8th IVS General Meeting. Science Press, Beijing, pp 16–19. https://ivscc.gsfc.nasa.gov/publications/gm2014/

  27. Ray J, Altamimi Z (2005) Evaluation of co-location ties relating the VLBI and GPS reference frames. J Geod 79(4–5):189–195. doi:10.1007/s00190-005-0456-z

  28. Rietbroek R, Brunnabend SE, Kusche J, Schrter J, Dahle C (2016) Revisiting the contemporary sea-level budget on global and regional scales. Proc Natl Acad Sci 113(6):1504–1509. doi:10.1073/pnas.1519132113

    Article  Google Scholar 

  29. Schuh H, Behrend D (2012) VLBI: A fascinating technique for geodesy and astrometry. J Geodyn 61:68–80. doi:10.1016/j.jog.2012.07.007

    Article  Google Scholar 

  30. Schuh H, König R, Ampatzidis D, Glaser S, Flechtner F, Heinkelmann R, Nilsson TJ (2016) GGOS-SIM: Simulation of the Reference Frame for the Global Geodetic Observing System. Springer, Berlin, Heidelberg. doi:10.1007/1345_2015_217

    Google Scholar 

  31. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123. doi:10.1007/s00190-012-0567-2

    Article  Google Scholar 

  32. Seitz M, Bloßfeld M, Angermann D, Schmid R, Gerstl M, Seitz F (2016) The new DGFI-TUM realization of the ITRS: DTRF2014 (data). Deutsches Geodätisches Forschungsinstitut, Munich. doi:10.1594/PANGAEA.864046

  33. Sillard P, Boucher C (2001) A review of algebraic constraints in terrestrial reference frame datum definition. J Geod 75(2–3):63–73. doi:10.1007/s001900100166

    Article  Google Scholar 

  34. Sun J, Böhm J, Nilsson T, Krásná H, Böhm S, Schuh H (2014) New VLBI2010 scheduling strategies and implications on the terrestrial reference frames. J Geod 88(5):449–461. doi:10.1007/s00190-014-0697-9

    Article  Google Scholar 

  35. Thaller D, Krügel M, Rothacher M, Tesmer V, Schmid R, Angermann D (2007) Combined Earth orientation parameters based on homogeneous and continuous VLBI and GPS data. J Geod 81(6–8):529–541. doi:10.1007/s00190-006-0115-z

    Article  Google Scholar 

  36. Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geod 85(5):257–272. doi:10.1007/s00190-010-0433-z

    Article  Google Scholar 

  37. Wu X, Abbondanza C, Altamimi Z, Chin TM, Collilieux X, Gross RS, Heflin MB, Jiang Y, Parker JW (2015) KALREF—a Kalman filter and time series approach to the International Terrestrial Reference Frame realization. J Geophys Res Solid Earth 120(5):3775–3802. doi:10.1002/2014JB011622

    Article  Google Scholar 

  38. Zhu S, Reigber C, König R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data. J Geod 78(1–2):103–108. doi:10.1007/s00190-004-0379-0

    Google Scholar 

Download references

Acknowledgements

The German Research Foundation (DFG) is acknowledged for the financial support within the project “GGOS-SIM” (SCHU 1103/8-1) and the IVS (Schuh and Behrend 2012; Nothnagel et al. 2015) and the ILRS (Pearlman et al. 2002) for providing the data used within this study. We are grateful for the valuable comments of three anonymous reviewers who helped to improve the manuscript considerably.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Susanne Glaser.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Glaser, S., König, R., Ampatzidis, D. et al. A Global Terrestrial Reference Frame from simulated VLBI and SLR data in view of GGOS. J Geod 91, 723–733 (2017). https://doi.org/10.1007/s00190-017-1021-2

Download citation

Keywords

  • Terrestrial reference frame
  • GGOS
  • Inter-technique combination
  • Local ties
  • Global ties
  • VLBI
  • SLR