Skip to main content

Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations

Abstract

The most intense geomagnetic storm in solar cycle 24 occurred on March 17, 2015, and the detailed ionospheric storm morphologies are difficultly obtained from traditional observations. In this paper, the Geostationary Earth Orbit (GEO) observations of BeiDou Navigation Satellite System (BDS) are for the first time used to investigate the ionospheric responses to the geomagnetic storm. Using BDS GEO and GIMs TEC series, negative and positive responses to the March 2015 storm are found at local and global scales. During the main phase, positive ionospheric storm is the main response to the geomagnetic storm, while in the recovery phase, negative phases are pronounced at all latitudes. Maximum amplitudes of negative and positive phases appear in the afternoon and post-dusk sectors during both main and recovery phases. Furthermore, dual-peak positive phases in main phase and repeated negative phase during the recovery are found from BDS GEO observations. The geomagnetic latitudes corresponding to the maximum disturbances during the main and recovery phases show large differences, but they are quasi-symmetrical between southern and northern hemispheres. No clear zonal propagation of traveling ionospheric disturbances is detected in the GNSS TEC disturbances at high and low latitudes. The thermospheric composition variations could be the dominant source of the observed ionospheric storm effect from GUVI \(\hbox {[O]/[N}_{2}]\) ratio data as well as storm-time electric fields. Our study demonstrates that the BDS (especially the GEO) observations are an important data source to observe ionospheric responses to the geomagnetic storm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Afraimovich EL, Astafyeva EI, Demyanov VV et al (2013) A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J Space Weather Space Clim 3:A27. doi:10.1051/swsc/2013049

    Article  Google Scholar 

  • Astafyeva E, Zakharenkova I, Alken P (2016) Prompt penetration electric fields and the extreme topside ionospheric response to the June 22–23, 2015 geomagnetic storm as seen by the Swarm constellation, Earth. Planets Space 68:152. doi:10.1186/s40623-016-0526-x

    Article  Google Scholar 

  • Borries C, Berdermann J, Jakowski N, Wilken V (2015) Ionospheric storms: a challenge for empirical forecast of the total electron content. J Geophys Res: Space Phys 120(4):3175–3186. doi:10.1002/2015JA020988

    Article  Google Scholar 

  • Blagoveshchenskii DV (2013) Effect of geomagnetic storms (substorms) on the ionosphere: 1. A review. Geomagn Aeron 53(3):275–290. doi:10.1134/S0016793213030031

    Article  Google Scholar 

  • Buonsanto MJ (1999) Ionospheric storms: a review. Space Sci Rev 88(3):563–601. doi:10.1023/A:1005107532631

    Article  Google Scholar 

  • Chen Y, Liu L, Le H, Wan W (2014) Geomagnetic activity effect on the global ionosphere during the 2007–2009 deep solar minimum. J Geophys Res: Space Phys 119(5):3747–3754. doi:10.1002/2013JA019692

    Article  Google Scholar 

  • Danilov AD (2013) Ionospheric F-region response to geomagnetic disturbances. Adv Space Res 52(3):343–366. doi:10.1016/j.asr.2013.04.019

    Article  Google Scholar 

  • Ding F, Wan W, Liu L, Afraimovich EL, Voeykov SV, Perevalova NP (2008) A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005. J Geophys Res: Space Phys 113:A00A01. doi:10.1029/2008JA013037

    Google Scholar 

  • Ding F, Wan WX, Mao T, Wang M, Ning BQ, Zhao BQ, Xiong B (2014) Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys Res Lett 41(10):3351–3358. doi:10.1002/2014GL060107

    Article  Google Scholar 

  • Echer E, Gonzalez WD, Tsurutani BT (2011) Statistical studies of geomagnetic storms with peak \(\text{ Dst }\le - 50\) nT from 1957 to 2008. J Atmos Solar Terr Phys 73(11):1454–1459. doi:10.1016/j.jastp.2011.04.021

    Article  Google Scholar 

  • Fuller-Rowell TJ, Codrescu MV, Rishbeth H, Moffett RJ, Quegan S (1996) On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res: Space Phys 101(A2):2343–2353. doi:10.1029/95JA01614

    Article  Google Scholar 

  • Galav P, Rao SS, Sharma S, Gordiyenko G, Pandey R (2014) Ionospheric response to the geomagnetic storm of 15 May 2005 over midlatitudes in the day and night sectors simultaneously. J Geophys Res: Space Phys 119(6):5020–5031. doi:10.1002/2013JA019679

    Article  Google Scholar 

  • Gonzalez WD, Echer E (2005) A study on the peak Dst and peak negative Bz relationship during intense geomagnetic storms. Geophys Res Lett. doi:10.1029/2005GL023486

  • Gulyaeva TL, Veselovsky IS (2012) Two-phase storm profile of global electron content in the ionosphere and plasmasphere of the Earth. J Geophys Res: Space Phys 117:A09324. doi:10.1029/2012JA018017

    Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275. doi:10.1007/s00190-008-0266-1

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Aragón-Àngel À, García-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85(12):887–907. doi:10.1007/s00190-011-0508-5

    Article  Google Scholar 

  • Huang C-S, Foster JC, Kelley MC (2005) Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms. J Geophys Res 110:A11309. doi:10.1029/2005JA011202

    Article  Google Scholar 

  • Huba JD, Sazykin S (2014) Storm time ionosphere and plasmasphere structuring: SAMI3-RCM simulation of the 31 March 2001 geomagnetic storm. Geophys Res Lett 41(23):8208–8214. doi:10.1002/2014GL062110

    Article  Google Scholar 

  • Jakowski N, Jungstand A, Schlegel K, Kohl H, Rinnert K (1992) The ionospheric response to perturbation electric fields during the onset phase of geomagnetic storms. Can J Phys 70(7):575–581. doi:10.1139/p92-093

    Article  Google Scholar 

  • Jin SG, Luo OF, Park P (2008) GPS observations of the ionospheric F2-layer behavior during the 20th November 2003 geomagnetic storm over South Korea. J Geod 82(12):883–892. doi:10.1007/s00190-008-0217-x

    Article  Google Scholar 

  • Jin SG, Jin R, Li JH (2014) Pattern and evolution of seismo-ionospheric disturbances following the 2011 Tohoku earthquakes from GPS observations. J Geophys Res Space Phys 119(9):7914–7927. doi:10.1002/2014JA019825

    Article  Google Scholar 

  • Jin SG, Occhipinti G, Jin R (2015) GNSS ionospheric seismology: recent observation evidences and characteristics. Earth-Sci Rev 147:54–64. doi:10.1016/j.earscirev.2015.05.003

    Article  Google Scholar 

  • Jin SG, Jin R, Li D (2016) Assessment of BeiDou differential code bias variations from multi-GNSS network observations. Ann Geophs 34(2):259–269. doi:10.5194/angeo-34-259-2016

    Article  Google Scholar 

  • Klimenko MV, Klimenko VV, Ratovsky KG, Goncharenko LP (2012) Numerical modeling of the global ionospheric effects of storm sequence on September 9–14, 2005–comparison with IRI model. Earth Planets Space 64:433–440. doi:10.5047/eps.2011.06.048

    Article  Google Scholar 

  • Kil H, Kwak YS, Paxton LJ, Meier RR, Zhang Y (2011) O and N2 disturbances in the F region during the 20 November 2003 storm seen from TIMED/GUVI. J Geophys Res: Space Phys. doi:10.1029/2010JA016227

  • Lei J, Wang W, Burns AG, Solomon SC, Richmond AD, Wiltberger M, Goncharenko LP, Coster A, Reinisch BW (2008) Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase. J Geophys Res: Space Phys. doi:10.1029/2007JA012807

  • Lei J, Wang W, Burns AG, Yue X, Dou X, Luan X, Solomon SC, Liu YCM (2014) New aspects of the ionospheric response to the october 2003 superstorms from multiple-satellite observations. J Geophys Res: Space Phys 119(3):2298–2317. doi:10.1002/2013JA019575

    Article  Google Scholar 

  • Liu J, Zhao B, Liu L (2010) Time delay and duration of ionospheric total electron content responses to geomagnetic disturbances. Ann Geophys 28(3):795–805. doi:10.5194/angeo-28-795-2010

    Article  Google Scholar 

  • Liu S-L, Li L-W (2002) Study on relationship between Southward IMF events and geomagnetic storms. Chin J Geophys 45(3):301–310. doi:10.1002/cjg2.243

    Article  Google Scholar 

  • Mangla B, Sharma DK, Rajput A (2014) Diurnal and seasonal variation of topside ionospheric ion density over Indian region at solar minimum and solar maximum. Adv Space Res 54(9):1813–1817. doi:10.1016/j.asr.2014.07.031

    Article  Google Scholar 

  • Mannucci AJ, Tsurutani BT, Iijima BA et al (2005) Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms”. Geophys Res Lett 32:L1S02. doi:10.1029/2004GL021467

    Article  Google Scholar 

  • Martyn DF (1953) The morphology of the ionospheric variations associated with magnetic disturbance. I. Variations at moderately low latitudes. Proc R Soc Lond A: Math Phys Eng Sci 218(1132):1–18. doi:10.1098/rspa.1953.0082

    Article  Google Scholar 

  • Matsushita S (1959) A study of the morphology of ionospheric storms. J Geophys Res 64(3):305–321. doi:10.1029/JZ064i003p00305

    Article  Google Scholar 

  • Mendillo M (1971) Ionospheric total electron content behaviour during geomagnetic storms. Nat Phys Sci 234:23–24. doi:10.1038/physci234023a0

    Article  Google Scholar 

  • Mendillo M (2006) Storms in the ionosphere: patterns and processes for total electron content. Rev Geophys 44(4):RG4001. doi:10.1002/2013JA019692

    Article  Google Scholar 

  • Mikhailov AV, Förster M (1997) Day-to-day thermosphere parameter variation as deduced from Millstone Hill incoherent scatter radar observations during March 16–22, 1990 magnetic storm period. Ann Geophys 15(11):1429–1438. doi:10.1007/s00585-997-1429-8

    Article  Google Scholar 

  • Nava B, Rodríguez-Zuluaga J, AlazoCuartas K, Kashcheyev A, Migoya-Orué Y, Radicella SM, Amory-Mazaudier C, Fleury R (2016) Middle- and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J Geophys Res Space Phys. doi:10.1002/2015JA022299

  • Prölss GW (1995) Ionospheric F-region storms. In: Volland H (ed) Handbook of atmospheric electrodynamics, 2nd edn. CRC Press, Boca Raton, Fla., pp 195–248

    Google Scholar 

  • Richards PG (2001) Seasonal and solar cycle variations of the ionospheric peak electron density: comparison of measurement and models. J Geophys Res: Space Phys 106(A7):12803–12819. doi:10.1029/2000JA000365

    Article  Google Scholar 

  • Richardson IG, Cane HV (2012) Solar wind drivers of geomagnetic storms during more than four solar cycles. J Space Weather Space Clim 2:A01. doi:10.1051/swsc/2012001

    Google Scholar 

  • Richardson IG (2013) Geomagnetic activity during the rising phase of solar cycle 24. J Space Weather Space Clim. doi:10.1051/swsc/2013031

  • Sato T (1956) Disturbances in the ionospheric F2 region associated with geomagnetic storms I. Equatorial zone. J Geomagn Geoelectr 8(4):129–135. doi:10.5636/jgg.8.129

    Article  Google Scholar 

  • Seaton MJ (1956) A possible explanation of the drop in F-region critical densities accompanying major ionospheric storms. J Atmos Terr Phys 8(1):122–124. doi:10.1016/0021-9169(56)90102-7

    Article  Google Scholar 

  • Strickland DJ, Daniell RE, Craven JD (2001) Negative ionospheric storm coincident with DE 1-observed thermospheric disturbance on October 14, 1981. J Geophys Res: Space Phys 106(A10):21049–21062. doi:10.1029/2000JA000209

    Article  Google Scholar 

  • Tsai H-F, Liu J-Y, Tsai W-H, Liu C-H, Tseng C-L, Wu C-C (2001) Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions. J Geophys Res: Space Phys 106(A12):30363–30369. doi:10.1029/2001JA001107

    Article  Google Scholar 

  • Tulasi Ram S, Yokoyama T, Otsuka Y et al (2016) Duskside enhancement of equatorial zonal electric field response to convection electric fields during the St. Patrick’s Day storm on 17 March 2015. J Geophys Res Space Phys 121:538–548. doi:10.1002/2015JA021932

    Article  Google Scholar 

  • Vijaya Lekshmi D, Balan N, Tulasi Ram S, Liu JY (2011) Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles. J Geophys Res: Space Phys 116:A11328. doi:10.1029/2011JA017042

    Article  Google Scholar 

  • Wang W, Lei J, Burns A, Solomon S, Wiltberger M, Xu JJ, Coster A (2010) Ionospheric response to the initial phase of geomagnetic storms: common features. J Geophys Res: Space Phys 116:11328. doi:10.1029/2009JA014461

    Google Scholar 

  • Yue X, Wang W, Lei J, Burns A, Zhang Y, Wan W, Liu L, Hu L, Zhao B, Schreiner WS (2016) Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm. J Geophys Res: Space Phys 121:9234–9249. doi:10.1002/2016JA022984

  • Zhang Y, Paxton LJ, Morrison D, Wolven B, Kil H, Meng CI, Mende SB, Immel TJ (2004) O/N2 changes during 1–4 October 2002 storms: IMAGE SI-13 and TIMED/GUVI observations. J Geophys Res: Space Phys 109(A10):A10308. doi:10.1029/2004JA010441

    Article  Google Scholar 

  • Zhao B, Wan W, Liu L, Igarashi K, Yumoto K, Ning B (2009) Ionospheric response to the geomagnetic storm on 13–17 April 2006 in the West Pacific region. J Atmos Solar Terr Phys 71(1):88–100. doi:10.1016/j.jastp.2008.09.029

    Article  Google Scholar 

  • Zhao X, Jin SG, Mekik C, Feng J (2016) Evaluation of regional ionopsheric grid model over China from dense GPS observations. Geod Geodyn 7(5):361–368

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Wuhan University for providing BETS data and the IGS for providing MGEX data (ftp://cddis.gsfc.nasa.gov/pub/gps/data/campaign/mgex) as well as Dr. Jiuhou Lei for discussion. \(\hbox {[O]/[N}_{2}]\) ratio data from GUVI are provided by the Johns Hopkins University Applied Physics Laboratory (http://guvi.jhuapl.edu/site/data). This work was supported by the National Natural Science Foundation of China (NSFC) Project (Grant No. 11573052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuanggen Jin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Jin, R. & Kutoglu, H. Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations. J Geod 91, 613–626 (2017). https://doi.org/10.1007/s00190-016-0988-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0988-4

Keywords

  • Ionospheric anomaly
  • Geomagnetic storm
  • TEC
  • BDS
  • GIM