Skip to main content

CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis

Abstract

This article describes the processing strategy and the validation results of CODE’s MGEX (COM) orbit and satellite clock solution, including the satellite systems GPS, GLONASS, Galileo, BeiDou, and QZSS. The validation with orbit misclosures and SLR residuals shows that the orbits of the new systems Galileo, BeiDou, and QZSS are affected by modelling deficiencies with impact on the orbit scale (e.g., antenna calibration, Earth albedo, and transmitter antenna thrust). Another weakness is the attitude and solar radiation pressure (SRP) modelling of satellites moving in the orbit normal mode—which is not yet correctly considered in the COM solution. Due to these issues, we consider the current state COM solution as preliminary. We, however, use the long-time series of COM products for identifying the challenges and for the assessment of model-improvements. The latter is demonstrated on the example of the solar radiation pressure (SRP) model, which has been replaced by a more generalized model. The SLR validation shows that the new SRP model significantly improves the orbit determination of Galileo and QZSS satellites at times when the satellite’s attitude is maintained by yaw-steering. The impact of this orbit improvement is also visible in the estimated satellite clocks—demonstrating the potential use of the new generation satellite clocks for orbit validation. Finally, we point out further challenges and open issues affecting multi-GNSS data processing that deserves dedicated studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Arnold D, Meindl M, Beutler G, Dach R, Schaer S, Lutz S, Prange L, Sośnica K, Mervart L, Jäggi A (2015) CODEs new solar radiation pressure model for GNSS orbit determination. J Geod 89(8):775–791. doi:10.1007/s00190-015-0814-4

    Article  Google Scholar 

  2. Bar-Sever YE (1996) A new model for GPS yaw attitude. J Geod 70(11):714–723. doi:10.1007/BF00867149

    Article  Google Scholar 

  3. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–386

    Google Scholar 

  4. Bruyninx C, Baire Q, Legrand J, Roosbeek F (2011) The EUREF Permanent Network (EPN): Recent Developments and Key Issues. Presentation, EUREF 2011 Symposium, Chisinau, Republic of Moldova

  5. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–366. doi:10.1007/s00190-008-0281-2

    Article  Google Scholar 

  6. Dach R, Schaer S, Lutz S, Meindl M, Bock H, Orliac E, Prange L, Thaller D, Mervart L, Jäggi A, Beutler G, Brockmann E, Ineichen D, Wiget A, Weber G, Habrich H, Ihde J, Steigenberger P, Hugentobler U (2012) Center for Orbit Determination in Europe: IGS technical report 2011. International GNSS Service: Technical Report 2011, edited by Meindl M, Dach R, and Jean Y (AIUB), IGS Central Bureau, pp 29–40. doi:10.7892/boris.80302

  7. Dach R, Schaer S, Lutz S, Arnold D, Bock H, Orliac E, Prange L, Villiger A, Mervart L, Jäggi A, Beutler G, Brockmann E, Ineichen D, Wiget A, Rülke A, Thaller D, Habrich H, Söhne W, Ihde J, Steigenberger P, Hugentobler U (2015) CODE Analysis Center Technical Report 2014. International GNSS Service: Technical Report 2014, edited by Dach R and Jean Y (AIUB), IGS Central Bureau, pp 21–34. doi:10.7892/boris.80306

  8. Dach R, Lutz S, Walser P, Fridez P (Eds) (2015) Bernese GNSS Software Version 5.2. User manual. Astronomical Institute, Universtiy of Bern, Bern Open Publishing. doi:10.7892/boris.72297

  9. Dai X, Ge M, Lou Y, Shi C, Wickert J, Schuh H (2015) Estimating the yaw-attitude of BDS IGSO and MEO satellites. J Geod 89(10):1005–1018. doi:10.1007/s00190-015-0829-x

    Article  Google Scholar 

  10. Delva P, Hees A, Bertone S, Richard E, Wolf P (2015) Test of the gravitational redshift with stable clocks in eccentric orbits: application to Galileo satellites 5 and 6. Class Quantum Gravity 32(23). doi:10.1088/0264-9381/32/23/232003

  11. Deng Z, Fritsche M, Uhlemann M, Wickert J, Schuh H (2016) Reprocessing of GFZ Multi-GNSS product GBM. Presentation, IGS Workshop 2016, Sydney Australia, 08-12 Feb 2016

  12. Dilssner F, Springer T, Gienger G, Dow J (2011) The GLONASS-M satellite yaw-attitude model. Adv Space Res 47(1):160–171. doi:10.1016/j.asr.2010.09.007

    Article  Google Scholar 

  13. Dilssner F, Springer T, Schönemann E, Enderle W (2014) Estimation of satellite antenna phase center corrections for BeiDou. Poster, IGS Workshop 2014, Pasadena, USA, June 23-27 2014

  14. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  15. European Space Agency (ESA) and European GNSS Agency (GSA), Sixth Galileo satellite in corrected orbit. Galileo GNSS online. http://galileognss.eu/tag/galileo-foc-fm1/. Accessed 23 Sep 2015

  16. Guo J, Xu X, Zhao Q, Liu J (2016) Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. J Geod 90:143–159. doi:10.1007/s00190-015-0862-9

    Article  Google Scholar 

  17. IGS-MGEX. Online. http://igs.org/mgex/. Accessed 01 Sep 2016

  18. Ikari S, Ebinuma T, Funase R, Nakasuka S (2013) An evaluation of solar radiation pressure models for QZS-1 precise orbit determination. In: Proceedings of ION GNSS. ION, Nashville, pp 1234–1241

  19. ILRS, Current Missions. Online. http://ilrs.gsfc.nasa.gov/missions/satellite_missions/current_missions/. Accessed 23 Sep 2015

  20. Ishijima Y, Inaba N, Matsumoto A, Terada K, Yonechi H, Ebisutani H, Ukawa S, Okamoto T (2009) Design and development of the first quasizenith satellite attitude and orbit control system. In: Proceedings of the IEEE AerospaceConference, IEEE, pp 1–8. doi:10.1109/AERO.2009.4839537

  21. Konrad A, Fischer HD, Müller C, Oesterlin W (2007) Attitude & orbit control system for Galileo IOV. In: 17th IFAC Symposium on Automatic Control in. Aerospace 2007. doi:10.3182/20070625-5-FR-2916.00006

  22. Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13(1):1–12. doi:10.1007/s10291-008-0092-1

    Article  Google Scholar 

  23. Langley R (2014) ESA discusses galileo satellite power loss. GPS World online. http://gpsworld.com/esa-discusses-galileo-satellite-power-loss-upcoming-launch/. Accessed 23 Sep 2015

  24. Langley R (2016) Navstar GPS Constellation Status. http://www2.unb.ca/gge/Resources/GPSConstellationStatus.txt. Accessed 01 Sept 2016

  25. Lutz S, Arnold D, Schaer S, Dach R, Jäggi A (2013) New RINEX file monitoring at CODE. Poster, EUREF Symposium 2013, Budapest, Hungary, May 29–31 2013

  26. Lutz S, Meindl M, Steigenberger P, Beutler G, Sośnica K, Schaer S, Dach R, Arnold D, Thaller D, Jäggi A (2016) Impact of the arc length on GNSS analysis results. J Geod 90(4):365–378. doi:10.1007/s00190-015-0878-1

    Article  Google Scholar 

  27. MacLeod K, Agrotis L (2013) IGS RINEX Working Group Report 2011. International GNSS Service: Technical Report 2012, edited by Dach R, Jean Y (AIUB), IGS Central Bureau, pp 191–194. doi:10.7892/boris.80303

  28. Montenbruck O, Steigenberger P, Schönemann E, Hauschild A, Hugentobler U, Dach R, Becker M (2012) Flight Characterization of New Generation GNSS Satellite Clocks. Navig J Inst Navig 59(4):291–302

    Article  Google Scholar 

  29. Montenbruck O, Rizos C, Weber R, Weber G, Neilan RE, Hugentobler U (2013) Getting a Grip on Multi-GNSS: The International GNSS Service MGEX Campaign. GPS World 24(7):44–49

    Google Scholar 

  30. Montenbruck O, Steigenberger P, Hugentobler U (2015) Enhanced solar radiation pressure modeling for Galileo satellites. J Geod 89:283–297. doi:10.1007/s00190-014-0774-0

    Article  Google Scholar 

  31. Montenbruck O, Schmid R, Mercier F, Steigenberger P, Noll C, Fatkulin R, Kogure S, Ganeshan AS (2015) GNSS Satellite Geometry and Attitude Models. Adv Space Res 56(6):1015–1029. doi:10.1016/j.asr.2015.06.019

    Article  Google Scholar 

  32. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  33. Prange L, Dach R, Lutz S, Schaer S, Jäggi A (2016) The CODE MGEX Orbit and Clock Solution. In: Rizos C, Willis P (eds) IAG 150 years, International Association of Geodesy Symposia. Springer, New York, pp 767–773. doi:10.1007/1345_2015_161

    Google Scholar 

  34. Qiao J, Chen W (2015) BeiDou Satellites maneuvers detection for precise Orbit determination. Presentation, 26th IUGG General Assembly, Prague, Czech Republic, 22 June–02 July 2015

  35. Rodriguez-Solano CJ, Hugentobler U, Steigenberger P, Lutz S (2012) Impact of Earth radiation pressure on GPS position estimates. J Geod 86(5):309–317. doi:10.1007/s00190-011-0517-4

    Article  Google Scholar 

  36. Rodriguez-Solano CJ, Hugentobler U, Steigenberger P, Blösfeld M, Fritsche M (2014) Reducing the draconitic errors in GNSS geodetic products. J Geod 88(6):559–574. doi:10.1007/s00190-014-0704-1

    Article  Google Scholar 

  37. Schaer S (2012) Bias and Calibration Working Group: IGS Technical Report 2011. International GNSS Service: Technical Report 2011, edited by Meindl M, Dach R, Jean Y (AIUB), IGS Central Bureau, pp 139–154. doi:10.7892/boris.80302

  38. Sośnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015) Satellite laser ranging to GPS and GLONASS. J Geod 89(7):725–743. doi:10.1007/s00190-015-0810-8

    Article  Google Scholar 

  39. Springer TA, Beutler G, Rothacher M (1999) A new solar radiation pressure model for GPS satellites. GPS Solut 3(2):50–62

    Article  Google Scholar 

  40. Springer TA, Flohrer C, Otten M, Enderle W (2014) ESA Reprocessing: Advances in GNSS analysis. Presentation, IGS Workshop 2014, Pasadena, USA, 23–27 June 2014

  41. Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of Compass GEO and IGSO satellites. J Geod 87(6):515–525. doi:10.1007/s00190-013-0625-4

    Article  Google Scholar 

  42. Steigenberger P, Kogure S (2014) IGS-MGEX: QZSS Orbit and Clock Determination. presentation, IGS workshop 2014, Pasadena, USA, 23–27 June 2014

  43. Steigenberger P, Hugentobler U, Loyer S, Perosanz F, Prange L, Dach R, Uhlemann M, Gendt G, Montenbruck O (2015) Galileo orbit and clock quality of the IGS Multi-GNSS Experiment. Adv Space Res 55(1):269–281. doi:10.1016/j.asr.2014.06.030

    Article  Google Scholar 

  44. Steigenberger P, Montenbruck O, Hugentobler U (2015) GIOVE-B solar radiation pressure modeling for precise orbit determination. Adv Space Res 55(5):1422–1431. doi:10.1016/j.asr.2014.12.009

    Article  Google Scholar 

  45. Steigenberger P, Fritsche M, Dach R, Schmid R, Montenbruck O, Uhlemann M, Prange L (2016) Estimation of satellite antenna phase center offsets for Galileo. J Geod 90(8):773–785. doi:10.1007/s00190-016-0909-6

    Article  Google Scholar 

  46. Uhlemann M, Gendt G, Ramatschi M, Deng Z (2016) GFZ Global Multi-GNSS Network and Data Processing Results. In: Rizos C, Willis P (eds) IAG 150 years, International Association of Geodesy Symposia. Springer, New York, pp 673–679. doi:10.1007/1345_2015_120

    Google Scholar 

  47. Ziebart M (2004) Generalized Analytical Solar Radiation Pressure Modeling Algorithm for Spacecraft of Complex Shape. J Spacecr Rocket 41(5):840–848. doi:10.2514/1.13097

    Article  Google Scholar 

Download references

Acknowledgements

We thank all institutions providing and distributing raw data of MGEX stations. We thank the ILRS for providing SLR measurements to a variety of GNSS satellites which are valuable for an independent orbit validation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lars Prange.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prange, L., Orliac, E., Dach, R. et al. CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis. J Geod 91, 345–360 (2017). https://doi.org/10.1007/s00190-016-0968-8

Download citation

Keywords

  • IGS
  • CODE
  • Multi-GNSS
  • ECOM
  • Solar radiation pressure model
  • Orbit determination
  • Satellite clock