Journal of Geodesy

, Volume 91, Issue 4, pp 345–360 | Cite as

CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis

  • Lars PrangeEmail author
  • Etienne Orliac
  • Rolf Dach
  • Daniel Arnold
  • Gerhard Beutler
  • Stefan Schaer
  • Adrian Jäggi
Original Article


This article describes the processing strategy and the validation results of CODE’s MGEX (COM) orbit and satellite clock solution, including the satellite systems GPS, GLONASS, Galileo, BeiDou, and QZSS. The validation with orbit misclosures and SLR residuals shows that the orbits of the new systems Galileo, BeiDou, and QZSS are affected by modelling deficiencies with impact on the orbit scale (e.g., antenna calibration, Earth albedo, and transmitter antenna thrust). Another weakness is the attitude and solar radiation pressure (SRP) modelling of satellites moving in the orbit normal mode—which is not yet correctly considered in the COM solution. Due to these issues, we consider the current state COM solution as preliminary. We, however, use the long-time series of COM products for identifying the challenges and for the assessment of model-improvements. The latter is demonstrated on the example of the solar radiation pressure (SRP) model, which has been replaced by a more generalized model. The SLR validation shows that the new SRP model significantly improves the orbit determination of Galileo and QZSS satellites at times when the satellite’s attitude is maintained by yaw-steering. The impact of this orbit improvement is also visible in the estimated satellite clocks—demonstrating the potential use of the new generation satellite clocks for orbit validation. Finally, we point out further challenges and open issues affecting multi-GNSS data processing that deserves dedicated studies.


IGS CODE Multi-GNSS ECOM Solar radiation pressure model Orbit determination Satellite clock 



We thank all institutions providing and distributing raw data of MGEX stations. We thank the ILRS for providing SLR measurements to a variety of GNSS satellites which are valuable for an independent orbit validation.


  1. Arnold D, Meindl M, Beutler G, Dach R, Schaer S, Lutz S, Prange L, Sośnica K, Mervart L, Jäggi A (2015) CODEs new solar radiation pressure model for GNSS orbit determination. J Geod 89(8):775–791. doi: 10.1007/s00190-015-0814-4 CrossRefGoogle Scholar
  2. Bar-Sever YE (1996) A new model for GPS yaw attitude. J Geod 70(11):714–723. doi: 10.1007/BF00867149 CrossRefGoogle Scholar
  3. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–386Google Scholar
  4. Bruyninx C, Baire Q, Legrand J, Roosbeek F (2011) The EUREF Permanent Network (EPN): Recent Developments and Key Issues. Presentation, EUREF 2011 Symposium, Chisinau, Republic of MoldovaGoogle Scholar
  5. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–366. doi: 10.1007/s00190-008-0281-2 CrossRefGoogle Scholar
  6. Dach R, Schaer S, Lutz S, Meindl M, Bock H, Orliac E, Prange L, Thaller D, Mervart L, Jäggi A, Beutler G, Brockmann E, Ineichen D, Wiget A, Weber G, Habrich H, Ihde J, Steigenberger P, Hugentobler U (2012) Center for Orbit Determination in Europe: IGS technical report 2011. International GNSS Service: Technical Report 2011, edited by Meindl M, Dach R, and Jean Y (AIUB), IGS Central Bureau, pp 29–40. doi: 10.7892/boris.80302
  7. Dach R, Schaer S, Lutz S, Arnold D, Bock H, Orliac E, Prange L, Villiger A, Mervart L, Jäggi A, Beutler G, Brockmann E, Ineichen D, Wiget A, Rülke A, Thaller D, Habrich H, Söhne W, Ihde J, Steigenberger P, Hugentobler U (2015) CODE Analysis Center Technical Report 2014. International GNSS Service: Technical Report 2014, edited by Dach R and Jean Y (AIUB), IGS Central Bureau, pp 21–34. doi: 10.7892/boris.80306
  8. Dach R, Lutz S, Walser P, Fridez P (Eds) (2015) Bernese GNSS Software Version 5.2. User manual. Astronomical Institute, Universtiy of Bern, Bern Open Publishing. doi: 10.7892/boris.72297
  9. Dai X, Ge M, Lou Y, Shi C, Wickert J, Schuh H (2015) Estimating the yaw-attitude of BDS IGSO and MEO satellites. J Geod 89(10):1005–1018. doi: 10.1007/s00190-015-0829-x CrossRefGoogle Scholar
  10. Delva P, Hees A, Bertone S, Richard E, Wolf P (2015) Test of the gravitational redshift with stable clocks in eccentric orbits: application to Galileo satellites 5 and 6. Class Quantum Gravity 32(23). doi: 10.1088/0264-9381/32/23/232003
  11. Deng Z, Fritsche M, Uhlemann M, Wickert J, Schuh H (2016) Reprocessing of GFZ Multi-GNSS product GBM. Presentation, IGS Workshop 2016, Sydney Australia, 08-12 Feb 2016Google Scholar
  12. Dilssner F, Springer T, Gienger G, Dow J (2011) The GLONASS-M satellite yaw-attitude model. Adv Space Res 47(1):160–171. doi: 10.1016/j.asr.2010.09.007 CrossRefGoogle Scholar
  13. Dilssner F, Springer T, Schönemann E, Enderle W (2014) Estimation of satellite antenna phase center corrections for BeiDou. Poster, IGS Workshop 2014, Pasadena, USA, June 23-27 2014Google Scholar
  14. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  15. European Space Agency (ESA) and European GNSS Agency (GSA), Sixth Galileo satellite in corrected orbit. Galileo GNSS online. Accessed 23 Sep 2015
  16. Guo J, Xu X, Zhao Q, Liu J (2016) Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. J Geod 90:143–159. doi: 10.1007/s00190-015-0862-9 CrossRefGoogle Scholar
  17. IGS-MGEX. Online. Accessed 01 Sep 2016
  18. Ikari S, Ebinuma T, Funase R, Nakasuka S (2013) An evaluation of solar radiation pressure models for QZS-1 precise orbit determination. In: Proceedings of ION GNSS. ION, Nashville, pp 1234–1241Google Scholar
  19. ILRS, Current Missions. Online. Accessed 23 Sep 2015
  20. Ishijima Y, Inaba N, Matsumoto A, Terada K, Yonechi H, Ebisutani H, Ukawa S, Okamoto T (2009) Design and development of the first quasizenith satellite attitude and orbit control system. In: Proceedings of the IEEE AerospaceConference, IEEE, pp 1–8. doi: 10.1109/AERO.2009.4839537
  21. Konrad A, Fischer HD, Müller C, Oesterlin W (2007) Attitude & orbit control system for Galileo IOV. In: 17th IFAC Symposium on Automatic Control in. Aerospace 2007. doi: 10.3182/20070625-5-FR-2916.00006
  22. Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13(1):1–12. doi: 10.1007/s10291-008-0092-1 CrossRefGoogle Scholar
  23. Langley R (2014) ESA discusses galileo satellite power loss. GPS World online. Accessed 23 Sep 2015
  24. Langley R (2016) Navstar GPS Constellation Status. Accessed 01 Sept 2016
  25. Lutz S, Arnold D, Schaer S, Dach R, Jäggi A (2013) New RINEX file monitoring at CODE. Poster, EUREF Symposium 2013, Budapest, Hungary, May 29–31 2013Google Scholar
  26. Lutz S, Meindl M, Steigenberger P, Beutler G, Sośnica K, Schaer S, Dach R, Arnold D, Thaller D, Jäggi A (2016) Impact of the arc length on GNSS analysis results. J Geod 90(4):365–378. doi: 10.1007/s00190-015-0878-1 CrossRefGoogle Scholar
  27. MacLeod K, Agrotis L (2013) IGS RINEX Working Group Report 2011. International GNSS Service: Technical Report 2012, edited by Dach R, Jean Y (AIUB), IGS Central Bureau, pp 191–194. doi: 10.7892/boris.80303
  28. Montenbruck O, Steigenberger P, Schönemann E, Hauschild A, Hugentobler U, Dach R, Becker M (2012) Flight Characterization of New Generation GNSS Satellite Clocks. Navig J Inst Navig 59(4):291–302CrossRefGoogle Scholar
  29. Montenbruck O, Rizos C, Weber R, Weber G, Neilan RE, Hugentobler U (2013) Getting a Grip on Multi-GNSS: The International GNSS Service MGEX Campaign. GPS World 24(7):44–49Google Scholar
  30. Montenbruck O, Steigenberger P, Hugentobler U (2015) Enhanced solar radiation pressure modeling for Galileo satellites. J Geod 89:283–297. doi: 10.1007/s00190-014-0774-0 CrossRefGoogle Scholar
  31. Montenbruck O, Schmid R, Mercier F, Steigenberger P, Noll C, Fatkulin R, Kogure S, Ganeshan AS (2015) GNSS Satellite Geometry and Attitude Models. Adv Space Res 56(6):1015–1029. doi: 10.1016/j.asr.2015.06.019 CrossRefGoogle Scholar
  32. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  33. Prange L, Dach R, Lutz S, Schaer S, Jäggi A (2016) The CODE MGEX Orbit and Clock Solution. In: Rizos C, Willis P (eds) IAG 150 years, International Association of Geodesy Symposia. Springer, New York, pp 767–773. doi: 10.1007/1345_2015_161 Google Scholar
  34. Qiao J, Chen W (2015) BeiDou Satellites maneuvers detection for precise Orbit determination. Presentation, 26th IUGG General Assembly, Prague, Czech Republic, 22 June–02 July 2015Google Scholar
  35. Rodriguez-Solano CJ, Hugentobler U, Steigenberger P, Lutz S (2012) Impact of Earth radiation pressure on GPS position estimates. J Geod 86(5):309–317. doi: 10.1007/s00190-011-0517-4 CrossRefGoogle Scholar
  36. Rodriguez-Solano CJ, Hugentobler U, Steigenberger P, Blösfeld M, Fritsche M (2014) Reducing the draconitic errors in GNSS geodetic products. J Geod 88(6):559–574. doi: 10.1007/s00190-014-0704-1 CrossRefGoogle Scholar
  37. Schaer S (2012) Bias and Calibration Working Group: IGS Technical Report 2011. International GNSS Service: Technical Report 2011, edited by Meindl M, Dach R, Jean Y (AIUB), IGS Central Bureau, pp 139–154. doi: 10.7892/boris.80302
  38. Sośnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015) Satellite laser ranging to GPS and GLONASS. J Geod 89(7):725–743. doi: 10.1007/s00190-015-0810-8 CrossRefGoogle Scholar
  39. Springer TA, Beutler G, Rothacher M (1999) A new solar radiation pressure model for GPS satellites. GPS Solut 3(2):50–62CrossRefGoogle Scholar
  40. Springer TA, Flohrer C, Otten M, Enderle W (2014) ESA Reprocessing: Advances in GNSS analysis. Presentation, IGS Workshop 2014, Pasadena, USA, 23–27 June 2014Google Scholar
  41. Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of Compass GEO and IGSO satellites. J Geod 87(6):515–525. doi: 10.1007/s00190-013-0625-4 CrossRefGoogle Scholar
  42. Steigenberger P, Kogure S (2014) IGS-MGEX: QZSS Orbit and Clock Determination. presentation, IGS workshop 2014, Pasadena, USA, 23–27 June 2014Google Scholar
  43. Steigenberger P, Hugentobler U, Loyer S, Perosanz F, Prange L, Dach R, Uhlemann M, Gendt G, Montenbruck O (2015) Galileo orbit and clock quality of the IGS Multi-GNSS Experiment. Adv Space Res 55(1):269–281. doi: 10.1016/j.asr.2014.06.030 CrossRefGoogle Scholar
  44. Steigenberger P, Montenbruck O, Hugentobler U (2015) GIOVE-B solar radiation pressure modeling for precise orbit determination. Adv Space Res 55(5):1422–1431. doi: 10.1016/j.asr.2014.12.009 CrossRefGoogle Scholar
  45. Steigenberger P, Fritsche M, Dach R, Schmid R, Montenbruck O, Uhlemann M, Prange L (2016) Estimation of satellite antenna phase center offsets for Galileo. J Geod 90(8):773–785. doi: 10.1007/s00190-016-0909-6 CrossRefGoogle Scholar
  46. Uhlemann M, Gendt G, Ramatschi M, Deng Z (2016) GFZ Global Multi-GNSS Network and Data Processing Results. In: Rizos C, Willis P (eds) IAG 150 years, International Association of Geodesy Symposia. Springer, New York, pp 673–679. doi: 10.1007/1345_2015_120 Google Scholar
  47. Ziebart M (2004) Generalized Analytical Solar Radiation Pressure Modeling Algorithm for Spacecraft of Complex Shape. J Spacecr Rocket 41(5):840–848. doi: 10.2514/1.13097 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Astronomical Institute of the University of BernBernSwitzerland
  2. 2.Bundesamt für Landestopografie swisstopoWabernSwitzerland

Personalised recommendations