Journal of Geodesy

, Volume 91, Issue 7, pp 711–721 | Cite as

International VLBI Service for Geodesy and Astrometry

Delivering high-quality products and embarking on observations of the next generation
Original Article

Abstract

The International VLBI Service for Geodesy and Astrometry (IVS) regularly produces high-quality Earth orientation parameters from observing sessions employing extensive networks or individual baselines. The master schedule is designed according to the telescope days committed by the stations and by the need for dense sampling of the Earth orientation parameters (EOP). In the pre-2011 era, the network constellations with their number of telescopes participating were limited by the playback and baseline capabilities of the hardware (Mark4) correlators. This limitation was overcome by the advent of software correlators, which can now accommodate many more playback units in a flexible configuration. In this paper, we describe the current operations of the IVS with special emphasis on the quality of the polar motion results since these are the only EOP components which can be validated against independent benchmarks. The polar motion results provided by the IVS have improved continuously over the years, now providing an agreement with IGS results at the level of 20–25 \(\upmu \)as in a WRMS sense. At the end of the paper, an outlook is given for the realization of the VLBI Global Observing System.

Keywords

VLBI Polar motion Product quality VLBI Global Observing System 

References

  1. Abbondanza C, Chin T, Gross R, Heflin M, Parker J, van Dam T, Wu X (2016) JTRF2014, the 2014 JPL realization of the ITRS. Geophysical research abstracts, vol 18, EGU2016-10583Google Scholar
  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473CrossRefGoogle Scholar
  3. Bare C, Clark BG, Kellermann KI, Cohen MH, Jauncey DL (1967) Interferometer experiment with independent local oscillators. Science 157(3785):189–191CrossRefGoogle Scholar
  4. Bizouard C, Gambis D (2009) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2005. In: Drewes H (ed) Geodetic reference frames, IAG symposia, vol 134. Springer, Berlin, Heidelberg, pp 265–270. doi:10.1007/978-3-642-00860-3_41
  5. Broten NW, Legg TH, Locke JL, McLeish CW, Richards RS, Chisholm RM, Gush HP, Yen JL, Galt JA (1967) Long base line interferometry: a new technique. Science 156(3782):1592–1593. doi:10.1126/science.156.3782.1592 CrossRefGoogle Scholar
  6. Campbell J, Nothnagel A (2000) European VLBI for crustal dynamics. J Geodyn 30(3):321–326CrossRefGoogle Scholar
  7. Carter WE, Robertson DS (1986) Projects POLARIS and IRIS: monitoring polar motion and UT1 by very long baseline interferometry. In: Anderson AJ, Cazenave A (eds) Space geodesy and geodynamics. Academic Press, Orlando, pp 269–279Google Scholar
  8. Clark TA, Corey BE, Davis JL, Elgered G, Herring TA, Hinteregger HF, Knight CA, Levine JI, Lundqvist G, Ma C, Nesman EF, Phillips RB, Rogers AEE, Ronnang BO, Ryan JW, Schupler BR, Shaffer DB, Shapiro II, Vandenberg NR, Webber JC, Whitney AR (1985) Precision geodesy using the Mark-III very-long-baseline interferometer system. IEEE Trans Geosci Remote Sens GE-23:438–449Google Scholar
  9. Coates RJ, Frey H, Mead GD, Bosworth JM (1985) Space-age geodesy—the NASA crustal dynamics project. IEEE Trans Geosci Remote Sens (ISSN 0196-2892) GE-23:360–368Google Scholar
  10. Cohen MH, Shaffer DB (1971) Positions of radio sources from long-baseline interferometry. AJ 76:91–100CrossRefGoogle Scholar
  11. Dehant V, Lambert S, Koot L, Trinh A, Folgueira M (2012) Recent advances in applications of geodetic VLBI to geophysics. In: Behrend D, Baver KD (eds) Seventh IVS General Meeting Proceedings, Madrid, Spain, March 4–9, 2012, NASA, pp 362–369Google Scholar
  12. Hinteregger HF, Shapiro II, Robertson DS, Knight CA, Ergas RA, Whitney AR, Rogers AEE, Moran JM, Clark TA, Burke BF (1972) Precision geodesy via radio interferometry. Science 178:396–398. doi:10.1126/science.178.4059.396 CrossRefGoogle Scholar
  13. IERS (2015) In: Dick WR, Thaller D (eds) IERS Annual Report 2014. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  14. Jacobs CS, Arias F, Boboltz D, Böhm J, Bolotin S, Bourda G, Charlot P, de Witt A, Fey A, Gaume R, Gordon D, Heinkelmann R, Lambert S, Ma C, Malkin Z, Nothnagel A, Seitz M, Skurikhina E, Souchay J, Titov O (2014) ICRF-3: Roadmap to the next generation ICRF. In: Capitaine N (ed) Proc. Journées 2013, Systèmes de référence spatio-temporels, Paris, France, 16–18 September 2013, pp 51–56Google Scholar
  15. Luzum B, Nothnagel A (2010) Improved UT1 predictions through low-latency VLBI observations. J Geod 84(6):399–402. doi:10.1007/s00190-010-0372-8 CrossRefGoogle Scholar
  16. Ma C, Arias EF, Eubanks TM, Fey AL, Gontier A-M, Jacobs CS, Sovers OJ, Archinal BA, Charlot P (1998) The international celestial reference frame as realized by very long baseline interferometry. AJ 116:516–546. doi:10.1086/300408 CrossRefGoogle Scholar
  17. Malkin Z (2009) On comparison of the Earth orientation parameters obtained from different VLBI networks and observing programs. J Geod 83:547–556. doi:10.1007/s00190-008-0265-2 CrossRefGoogle Scholar
  18. Matveenko LI, Kardashev NS, Sholomitskii GB (1965) Large base-line radio interferometers. Radiophys Quantum Electron 8(4):461–463. doi:10.1007/BF01038318 Google Scholar
  19. Moran JM, Crowther PP, Burke BF, Barrett AH, Rogers AEE, Ball JA, Carter JC, Bare CC (1967) Spectral line interferometry with independent time standards at stations separated by 845 kilometers. Science 157(3789):676–677CrossRefGoogle Scholar
  20. Nothnagel et al (2015) The IVS data input to ITRF2014. International VLBI Service for Geodesy and Astrometry. doi:10.5880/GFZ.1.1.2015.002
  21. Petrachenko B, Niell A, Behrend D, Corey B, Böhm J, Charlot P, Collioud A, Gipson J, Haas R, Hobiger T, Koyama Y, MacMillan D, Malkin Z, Nilsson T, Pany A, Tuccari G, Whitney A, Wresnik J (2009) Design aspects of the VLBI2010 system—progress report of the IVS VLBI2010 Committee. NASA/TM-2009-214180Google Scholar
  22. Petrachenko WT, Niell AE, Corey BE, Behrend D, Schuh H, Wresnik J (2012) VLBI2010: next generation VLBI system for geodesy and astrometry. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for Planet Earth, International Association of Geodesy Symposia, vol 136. Springer, Berlin, Heidelberg, pp 999–1006. ISBN: 978-3-642-20337-4Google Scholar
  23. Petrachenko W, Behrend D, Hase H, Ma C, Niell A, Schuh H, Whitney A (2013) EGU General Assembly 2013, 7–12 April, 2013, Vienna, Austria, id. EGU2013-12867Google Scholar
  24. Plank L, Lovell J, Shabala S, Böhm J, Titov O (2015) Challenges for geodetic VLBI in the southern hemisphere. Adv Space Res 304–313. doi:10.1016/j.asr.2015.04.022
  25. Richter B, Dick W, Schwegmann W (2005) Proceedings of the IERS Workshop on site co-location, Matera, Italy, 23–24 October 2003. In: Richter B, Schwegmann W, Dick WR (eds) (IERS Technical Note; 33). Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie. ISBN 3-89888-793-6Google Scholar
  26. Robertson DS, Carter WE, Campbell J, Schuh H (1985) Daily earth rotation determinations from IRIS very long baseline interferometry. Nature 316:424–427CrossRefGoogle Scholar
  27. Schlüter W, Behrend D (2007) The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J Geod 81(6–8):379–387. doi:10.1007/s00190-006-0131-z CrossRefGoogle Scholar
  28. Schlüter W, Himwich WE, Nothnagel A, Vandenberg NR, Whitney AR (2002) IVS and its important role in the maintenance of the global reference systems. Adv Space Res 30(2):145–150 (Elsevier Science Ltd.)CrossRefGoogle Scholar
  29. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80CrossRefGoogle Scholar
  30. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123Google Scholar
  31. Shapiro II, Robertson DS, Knight CA, Counselman CC, Rogers AEE, Hinteregger HF, Lippincott S, Whitney AR, Clark TA, Niell AE, Spitzmesser DJ (1974) Transcontinental baseline and the rotation of the Earth measured by radio interferometry. Science 186:920–922Google Scholar
  32. Smith DE, Baltuck M (1993) Introduction (to the Crustal Dynamics Project). In: Smith DE, Turcotte DL (eds) Contributions of space geodesy to geodynamics: crustal dynamics, vol 23. Geodynamics series. AGU, Washington, DCGoogle Scholar
  33. Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70(4):1393–1454CrossRefGoogle Scholar
  34. Thompson AR, Moran JM, Swenson GW (2007) Interferometry and synthesis in radio astronomy, 2nd edn. Wiley, WeinheimGoogle Scholar
  35. UN (2015) Global geodetic reference frame for sustainable development (GGRF). Resolution of the United Nations, Ref. No. A/69/L.53, adopted by the United Nations General Assembly on Feb. 26, 2015, New YorkGoogle Scholar
  36. Whitney AR (2000) How Do VLBI correlators work? In: Vandenberg NR, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2000 General Meeting Proceedings, NASA/CP-2000-209893, pp 187–205Google Scholar
  37. Wooden W, Luzum B, Stamatakos N (2010) Current status and future directions of the IERS RS/PC predictions of UT1. Highlights Astron 15:218. doi:10.1017/S1743921310008872 Google Scholar
  38. Yoshino T (1999) Overview of the Key Stone Project. J Commun Res Lab 46(1):3–6 (Tokyo)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany
  2. 2.NVI, Inc.GreenbeltUSA
  3. 3.Pulkovo ObservatorySt. PetersburgRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia
  5. 5.Kazan Federal UniversityKazanRussia

Personalised recommendations