Skip to main content
Log in

On the consistency of the current conventional EOP series and the celestial and terrestrial reference frames

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Precise transformation between the celestial reference frames (CRF) and terrestrial reference frames (TRF) is needed for many purposes in Earth and space sciences. According to the Global Geodetic Observing System (GGOS) recommendations, the accuracy of positions and stability of reference frames should reach 1 mm and 0.1 mm year\(^{-1}\), and thus, the Earth Orientation Parameters (EOP) should be estimated with similar accuracy. Different realizations of TRFs, based on the combination of solutions from four different space geodetic techniques, and CRFs, based on a single technique only (VLBI, Very Long Baseline Interferometry), might cause a slow degradation of the consistency among EOP, CRFs, and TRFs (e.g., because of differences in geometry, orientation and scale) and a misalignment of the current conventional EOP series, IERS 08 C04. We empirically assess the consistency among the conventional reference frames and EOP by analyzing the record of VLBI sessions since 1990 with varied settings to reflect the impact of changing frames or other processing strategies on the EOP estimates. Our tests show that the EOP estimates are insensitive to CRF changes, but sensitive to TRF variations and unmodeled geophysical signals at the GGOS level. The differences between the conventional IERS 08 C04 and other EOP series computed with distinct TRF settings exhibit biases and even non-negligible trends in the cases where no differential rotations should appear, e.g., a drift of about 20 \(\upmu \)as year\(^{-1 }\)in \(y_{\mathrm{pol }}\) when the VLBI-only frame VTRF2008 is used. Likewise, different strategies on station position modeling originate scatters larger than 150 \(\upmu \)as in the terrestrial pole coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res 107:ETG 2–1 ETG 2–19. doi:10.1029/2001JB000561

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112(B09):401. doi:10.1029/2007JB004949

    Google Scholar 

  • Altamimi Z, Collilieux X, Metivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85:457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Altamimi Z, Dermanis A (2012) The choice of reference system in ITRF formulation. In: Sneeuw N et al (eds) VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy, Symposia 137. Springer, Berlin, pp 329–334

    Chapter  Google Scholar 

  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 121. doi:10.1002/2016JB013098

  • Belda S, Ferrándiz JM, Heinkelmann R, Nilsson T, Schuh H (2016) Testing a New Free Core Nutation empirical model. J Geodyn. doi:10.1016/j.jog.2016.02.002

    Google Scholar 

  • Bizouard C, Gambis D (2011) The combined solution C04 for Earth Orientation Parameters consistent with International Terrestrial Reference Frame 2008. Technical Note. http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf

  • Bloßfeld M, Seitz M, Angermann D (2014) Non-linear station motions in epoch and multi-year reference frames. J Geod 88:45–63. doi:10.1007/s00190-013-0668-6

    Article  Google Scholar 

  • Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84:201–219. doi:10.1007/s00190-009-0357-7

    Article  Google Scholar 

  • Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophy Res 111:B2. doi:10.1029/2005JB003629

    Google Scholar 

  • Böhm J, Böhm S, Pany A, Plank L, Spicakova H, Teke T, Schuh H (2012) The New Vienna VLBI Software VieVS. Geod for Planet Earth. Proc 2009 IAG Symp:1007–1011. doi:10.1007/978-3-642-20338-1126

  • Chao B, Hsieh Y (2015) The earths free core nutation: Formulation of dynamics and estimation of eigenperiod from the very-long-baseline interferometry data. Earth Planet Sci Lett 36:483–492

    Article  Google Scholar 

  • Dehant V (2002) Report of the IAU working group on ‘Non-rigid Earth Nutation Theory’. Highlights Astron 12:117–119

    Article  Google Scholar 

  • Dick W (2013) IERS Annual Report 2011. International Earth Rotation and Reference Systems Service, Central Bureau. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, p 159. ISBN:978-3-86482-046-5

  • Ding XL, Zheng DW, Dong DN, Ma C, Chen YQ, Wang GL (2005) Seasonal and secular positional variations at eight collocated GPS and VLBI stations. J Geod 79:71–81. doi:10.1007/s00190-005-0444-3

    Article  Google Scholar 

  • Eriksson D, MacMillan DS (2014) Continental hydrology loading observed by VLBI measurements. J Geod 88:675–690. doi:10.1007/s00190-014-0713-0

    Article  Google Scholar 

  • Ferrándiz JM, Gross R (2014) The New IAU/IAG Joint Working Group on Theory of Earth Rotation. Proc IAG Symp 143 (to appear)

  • Ferrándiz JM, Belda S, Heinkelmann R, Getino J, Schuh H (2016) Reference frames in earth rotation theories (to be submitted)

  • Feissel M, Bourquard D, Charlot P, Eisop E, Essaifi N, Lestrade JF, Arias EF, Boucher C, Altamimi Z (1993) Earth Orientation and Related Reference Frames. In: Smith DE, Turcotte DL (eds) Contributions of space geodesy to geodynamics: earth dynamics. American Geophysical Union, Washington, D.C. doi:10.1029/GD024p0099

  • Fey AL, Ma C, Arias EF, Charlot P, Feissel-Vernier M, Gontier AM, Jacobs CS, Li J, Macmillan DS (2004) The Second Extension of the International Celestial Reference Frame: ICRF-EXT.1. Astron J 127:3587–3608. doi:10.1086/420998

    Article  Google Scholar 

  • Fey AL, Gordon D, Jacobs CS, Ma C, Gaume RA, Arias EF, Bianco G, Boboltz DA, Boeckmann S, Bolotin S, Charlot P, Collioud A, Engelhardt G, Gipson J, Gontier AM, Heinkelmann R, Kurdubov S, Lambert S, Lytvyn S, MacMillan DS, Malkin Z, Nothnagel A, Ojha R, Skurikhina E, Sokolova J, Souchay J, Sovers OJ, Tesmer V, Titov O, Wang G, Zharov V (2015) The Second Realization of the International Celestial Reference Frame by very long baseline interferometry. Astron J 150:58. doi:10.1088/0004-6256/150/2/58

    Article  Google Scholar 

  • Heinkelmann R, Nilsson T, Karbon M, Liu L, Lu C, Mora Diaz JA, Parselia E, Raposo-Pulido V, Soja B, Xu M, Schuh H (2014a) The GFZ VLBI solution: characteristics and first results. In: Behrend D, Baver K, Armstrong K (eds) Proc 8th IVS general meeting “VGOS: the new VLBI network”, Shanghai, China 2014, pp 330–334

  • Heinkelmann R, Belda S, Ferrándiz JM, Schuh H (2014b) The consistency of the current conventional celestial and terrestrial reference frames and the conventional EOP series. In: Malkin Z, Capitaine N (eds) Proc Journ 2014: “Systèmes de référence spatio-temporels” Pulkovo observatory, pp 224–225

  • Heinkelmann R, Belda S, Ferrándiz JM, Schuh H (2015) How Consistent are The Current Conventional Celestial and Terrestrial Reference Frames and The Conventional Earth Orientation Parameters? In: Rizos C, Willis P (eds) Proceedings of the IAG Commision 1 Symposium 2014: Reference Frames for Applications in Geosciencies (International Association of Geodesy Symposia). Springer, Berlin. doi:10.1007/1345_2015_149

  • Hilton J, Capitaine N, Chapront J, Ferrándiz JM, Fienga A, Fukushima T, Getino J, Mathews P, Simon JL, Soffel M, Vondrak J, Wallace P, Williams J (2006) Report of the International Astronomical Union Division I Working Group on Precession and the Ecliptic. Celest Mech Dyn Astron 94:351–367. doi:10.1007/s10569-006-0001-2

    Article  Google Scholar 

  • Krásná H, Böhm J, Schuh J (2013) Free Core Nutation observed by VLBI. Astron Astrophys 555:A29. doi:10.1051/0004-6361/201321585

    Article  Google Scholar 

  • Krásná H, Böhm J, Plank L, Nilsson T, Schuh H (2014) Atmospheric effects on VLBI-derived terrestrial and celestial reference frames. In: Rizos C, Willis P (eds) Earth in the edge: science for a sustainable planet. IAG Symp, vol 139. Springer, Berlin, pp 203–207. doi:10.1007/978-3-642-37222-3__26

  • Krásná H, Malkin Z, Böhm J (2015) Non-Linear VLBI station motions and their impact on the celestial reference frame and Earth orientation parameters. J Geod 89. doi:10.1007/s00190-015-0830-4

  • Lambert S (2007) Empirical Model of the Earth’s Free Core Nutation. Technical note. http://syrte.obspm.fr/~lambert/fcn/

  • Ma C, Arias EF, Eubanks T, Fey A, Gontier AM, Jacobs C, Archinal OSB, Charlot P (1998) The International Celestial Reference Frame as Realized by Very Long Baseline Interferometry. Astron J 116:516. doi:10.1086/300408

    Article  Google Scholar 

  • Ma C et al (2009) The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. In: Fey AL, Gordon D, Jacobs CS (eds) IERS Technical Note, No. 35. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, pp 1–204

  • Malkin Z (2010) Comparison of CPO and FCN empirical models. In: Capitaine N (ed) Proc Journ 2010: New challenges for reference systems and numerical standards in astronomy, Paris, France, pp 172–175

  • Malkin Z (2013a) Impact of seasonal station motion on VLBI UT1 intensives results. J Geod 87:505–514. doi:10.1007/s00190-013-0624-5

    Article  Google Scholar 

  • Malkin Z (2013) Free core nutation and geomagnetic jerks. J. Geodyn 72:53–58. doi:10.1016/j.jog.2013.06.001

    Article  Google Scholar 

  • Nilsson T, Heinkelmann R, Karbon M, Raposo-Pulido V, Soja B, Schuh H (2014) Earth orientation parameters estimated from VLBI during the CONT11 campaign. J Geod 88:491–502. doi:10.1007/s00190-014-0700-5

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS Technical Note 36, vol 179. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, p 179. ISBN:3-89888-989-6

  • Plag H, Pearlman M (2009) Global Geodetic Observing System: Meeting the Requirements of a Global Society on a Changing Planet in 2020. Springer, New York, p 332. doi:10.1007/978-3-642-02687-4

  • Seitz M, Angermann D, Blo\(\beta \)feld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86:1097–1123. doi:10.1007/s00190-012-0567-2

  • Tesmer V, Steigenberger P, Rothacher M, Boehm J, Meisel B (2009) Annual deformation signals from homogeneously reprocessed VLBI and GPS height time series. J Geod 83:973–988. doi:10.1007/s00190-009-0316-3

    Article  Google Scholar 

Download references

Acknowledgments

SB and JMF work has been partly supported by Spanish grants CGL2010-12153-E, AYA2010-22039-C02-01, AYA2010-22039-C02-02 and APOSTD/2026/079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Belda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belda, S., Heinkelmann, R., Ferrándiz, J.M. et al. On the consistency of the current conventional EOP series and the celestial and terrestrial reference frames. J Geod 91, 135–149 (2017). https://doi.org/10.1007/s00190-016-0944-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0944-3

Keywords

Navigation