Journal of Geodesy

, Volume 90, Issue 12, pp 1371–1388 | Cite as

Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014

  • Graham Appleby
  • José Rodríguez
  • Zuheir Altamimi
Original Article

Abstract

Satellite laser ranging (SLR) to the geodetic satellites LAGEOS and LAGEOS-2 uniquely determines the origin of the terrestrial reference frame and, jointly with very long baseline interferometry, its scale. Given such a fundamental role in satellite geodesy, it is crucial that any systematic errors in either technique are at an absolute minimum as efforts continue to realise the reference frame at millimetre levels of accuracy to meet the present and future science requirements. Here, we examine the intrinsic accuracy of SLR measurements made by tracking stations of the International Laser Ranging Service using normal point observations of the two LAGEOS satellites in the period 1993 to 2014. The approach we investigate in this paper is to compute weekly reference frame solutions solving for satellite initial state vectors, station coordinates and daily Earth orientation parameters, estimating along with these weekly average range errors for each and every one of the observing stations. Potential issues in any of the large number of SLR stations assumed to have been free of error in previous realisations of the ITRF may have been absorbed in the reference frame, primarily in station height. Likewise, systematic range errors estimated against a fixed frame that may itself suffer from accuracy issues will absorb network-wide problems into station-specific results. Our results suggest that in the past two decades, the scale of the ITRF derived from the SLR technique has been close to 0.7 ppb too small, due to systematic errors either or both in the range measurements and their treatment. We discuss these results in the context of preparations for ITRF2014 and additionally consider the impact of this work on the currently adopted value of the geocentric gravitational constant, GM.

Keywords

SLR ITRF Systematic range error LAGEOS GM 

References

  1. Abbondanza C, Altamimi Z, Chin TM, Gross RS, Heflin MB, Parker JW, Wu X (2015) Three-Corner Hat for the assessment of the uncertainty of non-linear residuals of space-geodetic time series in the context of terrestrial reference frame analysis. J Geodesy 89:313–329CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geodesy 85(8):457–473CrossRefGoogle Scholar
  3. Angermann D, Müller H (2009) On the strength of SLR observations to realize the scale and origin of the terrestrial reference system. In: Sideris MG (eds) Observing our changing earth, Vol 133 of International association of geodesy symposia, Springer, Berlin, Heidelberg pp 21–29Google Scholar
  4. Appleby G (1995) Centre of mass corrections for LAGEOS and Etalon for single-photon ranging systems. In: Proceedings of annual eurolas meeting, Munich, Germany, pp 18–26Google Scholar
  5. Appleby G, Gibbs P (1995) Energy dependent range biases for single-photon-detection systems. In: Proceedings of annual eurolas meeting, Munich, Germany, pp 51–59Google Scholar
  6. Appleby GM (1992) Satellite signatures in SLR observations. In: 8th International workshop on laser ranging instrumentation, Annapolis, USAGoogle Scholar
  7. Appleby GM, Otsubo T (2013) Centre-of-mass values for precise analysis of LAGEOS, Etalon and Ajisai 1980–2013. In: 18th International workshop on laser ranging, Fujiyoshida, JapanGoogle Scholar
  8. Appleby G, Wilkinson M, Luceri V, Gibbs P, Smith V (2008) Attempts to separate apparent observational range bias from true geodetic signals. In: Proceedings of the 16th international workshop on laser ranging, Poznan, PolandGoogle Scholar
  9. Appleby GM (1997) Satellite laser ranging and the Etalon geodetic satellites. PhD diss, Aston University, Birmingham, UKGoogle Scholar
  10. Appleby GM, Gibbs P, Sherwood RA, Wood R (1999) Achieving and maintaining subcentimeter accuracy for the Herstmonceux single-photon SLR facility, In: Proceedings of SPIE vol 3865, pp 52–63Google Scholar
  11. Appleby GM, Smith V, Wilkinson M, Ziebart M, Williams SD (2010) Comparison of height anomalies determined from SLR, absolute gravimetry and GPS with high frequency borehole data at Herstmonceux. In: Mertikas SP (ed) Gravity, geoid and earth observation, Vol 135 of International Association of Geodesy Symposia, Springer, pp 107–113Google Scholar
  12. AWG, SLRF (2008) http://ilrs.gsfc.nasa.gov/science/awg/SLRF2008.html. Accessed 26 June 2016
  13. Bloßfeld M, Seitz M, Angermann D (2013) Non-linear station motions in epoch and multi-year reference frames. J Geodesy 88(1):45–63CrossRefGoogle Scholar
  14. Bloßfeld M, Štefka V, Müller H, Gerstl M (2015) Satellite laser ranging: a tool to realise GGOS? In: International association of geodesy symposia, Springer, Berlin, Heidelberg, pp 1–7Google Scholar
  15. Clarke CB, Degnan JJ, McGarry JR, Pavlis EC (2013) Processing single photon data for maximum range accuracy. In: 18th International workshop on laser ranging, Fujiyoshida, JapanGoogle Scholar
  16. Coulot D, Berio P, Laurain O, Féraudy D, Exertier P (2006) An original approach to compute satellite laser ranging biases. In: Proceedings of the 15th international workshop on laser ranging, Canberra, AustraliaGoogle Scholar
  17. Coulot D, Berio P, Bonnefond P, Exertier P, Féraudy D, Laurain O, Deleflie F (2009) Satellite laser ranging biases and terrestrial reference frame scale factor. In: Sideris MG (ed) Observing our changing earth, International association of geodesy symposia, Springer, Berlin, Heidelberg, Vol 133 pp 39–46Google Scholar
  18. Desai SD (2002) Observing the pole tide with satellite altimetry. J Geophys Res Oceans 107(C11):7–1713, 3186CrossRefGoogle Scholar
  19. Dunn P, Torrence M, Kolenkiewicz R, Smith D (1999) Earth scale defined by modern satellite ranging observations. Geophys Res Lett 26(10):1489–1492CrossRefGoogle Scholar
  20. Fitzmaurice MW, Minott PO, Abshire JB, Rowe HE (1977) Prelaunch testing of the laser geodynamics satellite (LAGEOS), Technical Report 1062, NASA Technical PaperGoogle Scholar
  21. Gibbs P, Sinclair A (1994) Investigation of a small range-dependent bias of two Stanford SR620 time interval counters. In: 9th International workshop on laser ranging instrumentation, Canberra, Australia, pp 274–276Google Scholar
  22. Gibbs P, Appleby GM, Potter C (2006) A reassessment of laser ranging accuracy at SGF Herstmonceux, UK. In: Proceedings of the 15th international workshop on laser ranging, Canberra, AustraliaGoogle Scholar
  23. Husson V (2003) Absolute and relative range bias detection capabilities. In: Noomen R, Klosko S, Noll C, Pearlman M (eds) Proceedings from the 13th international workshop on laser ranging instrumentation, Washington DC, USA, NASA/CP-2003-212248Google Scholar
  24. Husson VS, Ries JC, Eanes RJ, Horvath JE (2003) Millimeter QC of the ITRF using SLR. In: AGU fall meeting abstractsGoogle Scholar
  25. IERS (2016) IERS Mean Pole. http://hpiers.obspm.fr/eoppc/eop/eopc01/mean-pole.tab. Accessed 26 June 2016
  26. Kirchner G, Koidl F (1992) Work at Graz on satellite signatures. In: 8th International workshop on laser ranging instrumentation, Annapolis, U.SGoogle Scholar
  27. Kucharski D, Kirchner G, Otsubo T, Koidl F (2015) A method to calculate zero-signature satellite laser ranging normal points for millimeter geodesy: a case study with Ajisai. Earth Planet Space 67(1):1CrossRefGoogle Scholar
  28. Luceri V, Bianco G (2008) The MLRO range bias problem analysis and solution, Technical report. http://ilrs.gsfc.nasa.gov/docs/ASI.2008.07.04.1.pdf. Accessed 26 June 2016
  29. Mendes VB, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Let 31:L14602. doi:10.1029/2004GL020308
  30. Minott PO, Zagwodzki T, Selden M (1993) Prelaunch optical characterization of the laser geodynamics satellite (LAGEOS 2), Technical Report TP-3400, NASA Technical PaperGoogle Scholar
  31. Otsubo T, Appleby G (2005) Centre-of-mass correction issues: towards mm-ranging accuracy. In: Garate J, Davila JM, Noll C, Pearlman M (eds) Proceedings of the 14th international laser ranging workshop, San Fernando, Spain: Boletin ROA No. 5, Ministerio de Defensa, Real Instituto y Observatorio de la Armada, pp 467–471Google Scholar
  32. Otsubo T, Appleby GM (2003) System-dependent center-of-mass correction for spherical geodetic satellites. J Geophys Res Solid Earth 108(B4):2201. doi:10.1029/2002JB002209
  33. Otsubo T, Matsuo K, Appleby G, Sherwood R, Neubert R (2014) Scale parameters of the earth sensitive to the optical response of spherical SLR targets. In: AOGS 11th annual meeting, Sapporo, JapanGoogle Scholar
  34. Otsubo T, Sherwood R, Appleby G, Neubert R (2015) Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES. J Geodesy 89(4):303–312CrossRefGoogle Scholar
  35. Pavlis EC (2002) Dynamical determination of origin and scale in the earth system from satellite laser ranging. In: Ádám J, Schwarz K-P (eds) Vistas for Geodesy in the New Millennium, Vol 125 of International association of geodesy symposia, Springer, pp 36–41Google Scholar
  36. Pavlis EC, Luceri V (2013) Analysis report. In: Noll C, Pearlman M (eds) International laser ranging service 2009–2010 report, NASA/TP 2013-217507, pp 6–164Google Scholar
  37. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143CrossRefGoogle Scholar
  38. Petit G, Luzum B (eds) (2010) IERS Technical Note ; 36, Technical report, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main. 3-89888-989-6. http://tai.bipm.org/iers/conv2010/conv2010.html. Accessed 26 June 2016
  39. Plag H-P, Pearlman M (eds) (2009) Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer. ISBN 978-3-642-02687-4Google Scholar
  40. Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21(8):1897–1910CrossRefGoogle Scholar
  41. Ries JC, Eanes RJ, Huang C, Schutz BE, Shum CK, Tapley BD, Watkins MM, Yuan DN (1989) Determination of the gravitational coefficient of the earth from near-earth satellites. Geophys Res Lett 16(4):271–274CrossRefGoogle Scholar
  42. Ries JC, Eanes RJ, Shum CK, Watkins MM (1992) Progress in the determination of the gravitational coefficient of the earth. Geophys Res Lett 19(6):529–531CrossRefGoogle Scholar
  43. Schillak S, Michalek P (2006) Monitoring the international terrestrial reference frame 2000 by satellite laser ranging in 1993–2003. In: Brzeziński A, Capitaine N, Kolaczek B (eds) Journées 2005-systèmes de référence spatio-temporels, 70Google Scholar
  44. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geodesy 86(12):1097–1123CrossRefGoogle Scholar
  45. Sinclair AT, Appleby GM (1988) SATAN: programs for determination and analysis of satellite orbits from SLR data, SLR Technical Note 8. Royal Greenwich Observatory, CambridgeGoogle Scholar
  46. Sinclair AT (1995) The LAGEOS centre of mass correction for different detection techniques. In: Proceedings of annual eurolas meeting, Munich, Germany, pp 31–36Google Scholar
  47. Smith DE, Kolenkiewicz R, Dunn PJ, Torrence MH (2000) Earth scale below a part per billion from satellite laser ranging. In: Klaus-Peter Schwarz (ed) Geodesy Beyond 2000, Vol 121 of International association of geodesy symposia. Springer, pp 3–12. ISBN 978-3-642-64105-3Google Scholar
  48. Sośnica K, Rodríguez-Solano CJ, Thaller D, Jäggi A, Dach R, Beutler G (2013) Impact of Earth radiation pressure on LAGEOS orbits and on the global scale. In: 18th International workshop on laser ranging, Fujiyoshida, JapanGoogle Scholar
  49. Sośnica K, Jäggi A, Thaller D, Beutler G, Dach R (2014) Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geodesy 88(8):789–804CrossRefGoogle Scholar
  50. Sośnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015a) Satellite laser ranging to GPS and GLONASS. J Geodesy 89:725–743CrossRefGoogle Scholar
  51. Sośnica K, Jäggi A, Meyer U, Thaller D, Beutler G, Arnold D, Dach R (2015b) Time variable earths gravity field from SLR satellites. J Geodesy 89(10):945–960CrossRefGoogle Scholar
  52. Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geodesy 85(5):257–272CrossRefGoogle Scholar
  53. United Nations General Assembly (2015) UN resolution on global geodetic reference frame for sustainable development. http://un-ggim-europe.org. Accessed 26 June 2016
  54. Van Dam T, Ray R (2010) S1 and S2 atmospheric tide loading effects for geodetic applications. Updated October 2010. http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html. Data set accessed January 2015
  55. Zhu SY, Massmann FH, Reigber C (2001) The effect of the geocentric gravitational constant on scale. Scientific technical report, GeoForschungsZentrum Potsdam, PotsdamGoogle Scholar
  56. Zhu SY, Massmann FH, Yu Y, Reigber C (2002) Gravity model induced systematic errors in reference frames. In: Ádám J, Schwarz K-P (eds) Vistas for geodesy in the new millennium, Vol 125 of International association of geodesy symposia, Springer, pp 15–17Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Graham Appleby
    • 1
  • José Rodríguez
    • 1
  • Zuheir Altamimi
    • 2
  1. 1.NERC Space Geodesy FacilityHerstmonceux CastleHailsham East SussexUK
  2. 2.Institut Géographique NationalLAREGMarne-la-ValléeFrance

Personalised recommendations