Skip to main content
Log in

Determination of a terrestrial reference frame via Kalman filtering of very long baseline interferometry data

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

An Erratum to this article was published on 12 September 2016

Abstract

Terrestrial reference frames (TRF), such as the ITRF2008, are primary products of geodesy. In this paper, we present TRF solutions based on Kalman filtering of very long baseline interferometry (VLBI) data, for which we estimate steady station coordinates over more than 30 years that are updated for every single VLBI session. By applying different levels of process noise, non-linear signals, such as seasonal and seismic effects, are taken into account. The corresponding stochastic model is derived site-dependent from geophysical loading deformation time series and is adapted during periods of post-seismic deformations. Our results demonstrate that the choice of stochastic process has a much smaller impact on the coordinate time series and velocities than the overall noise level. If process noise is applied, tests with and without additionally estimating seasonal signals indicate no difference between the resulting coordinate time series for periods when observational data are available. In a comparison with epoch reference frames, the Kalman filter solutions provide better short-term stability. Furthermore, we find out that the Kalman filter solutions are of similar quality when compared to a consistent least-squares solution, however, with the enhanced attribute of being easier to update as, for instance, in a post-earthquake period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. http://itrf.ign.fr/ITRF_solutions/2014/.

  2. http://massloading.net.

References

  • Abbondanza C, Altamimi Z, Chin TM, Cross RS, Heflin MB, Parker JW, Wu X (2015) Three-Corner Hat for the assessment of the uncertainty of non-linear residuals of space-geodetic time series in the context of terrestrial reference frame analysis. J Geod 89(4):313–329. doi:10.1007/s00190-014-0777-x

  • Allan DW (1966) Statistics of atomic frequency standards. Proc IEEE 54(2):221–231

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res Solid Earth 107(B10):ETG 2-1–ETG 2-19. doi:10.1029/2001JB000561

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Arnold D, Meindl M, Beutler G, Dach R, Schaer S, Lutz S, Prange L, Sośnica K, Mervart L, Jäggi A (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geod 89(8):775–791. doi:10.1007/s00190-015-0814-4

    Article  Google Scholar 

  • Blewitt G, Lavalle D (2002) Effect of annual signals on geodetic velocity. J Geophys Res Solid Earth 107(B7):ETG 9-1–ETG 9-11. doi:10.1029/2001JB000570

  • Bloßfeld M, Seitz M, Angermann D (2014) Non-linear station motions in epoch and multi-year reference frames. J Geod 88(1):45–63. doi:10.1007/s00190-013-0668-6

    Article  Google Scholar 

  • Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84(3):201–219. doi:10.1007/s00190-009-0357-7

    Article  Google Scholar 

  • Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The new Vienna VLBI software VieVS. In: Kenyon S, Pacino MC, Marti U (eds) Proceedings of IAG scientific assembly 2009, international association of geodesy symposia, vol 136. Springer, Berlin, pp 1007–1011. doi:10.1007/978-3-642-20338-1_126

  • Chin TM (2001) On Kalman filter solution of space-time interpolation. IEEE Trans Image Process 10(4):663–666. doi:10.1109/83.913601

  • Chin TM, Gross RS, Boggs DH, Ratcliff JT (2009) Dynamical and observation models in the Kalman earth orientation filter. IPN Progress Report 42(176), 24 pp

  • Dobslaw H, Thomas M (2007) Simulation and observation of global ocean mass anomalies. J Geophys Res Oceans 112(C5):11 pp. doi:10.1029/2006JC004035, c05040

  • Fey AL, Gordon D, Jacobs CS, Ma C, Gaume RA, Arias EF, Bianco G, Boboltz DA, Böckmann S, Bolotin S, Charlot P, Collioud A, Engelhardt G, Gipson J, Gontier AM, Heinkelmann R, Kurdubov S, Lambert S, Lytvyn S, MacMillan DS, Malkin Z, Nothnagel A, Ojha R, Skurikhina E, Sokolova J, Souchay J, Sovers OJ, Tesmer V, Titov O, Wang G, Zharov V (2015) The second realization of the international celestial reference frame by very long baseline interferometry. Astron J 150(2):58. http://stacks.iop.org/1538-3881/150/i=2/a=58

  • Gelb A (1974) Applied Optimal Estimation. The MIT Press, Cambridge

    Google Scholar 

  • Gross RS (2000) Combinations of Earth-orientation measurements: SPACE97, COMB97, and POLE97. J Geod 73(12):627–637. doi:10.1007/s001900050001

    Article  Google Scholar 

  • Gross RS, Eubanks TM, Steppe JA, Freedman AP, Dickey JO, Runge TF (1998) A Kalman-filter-based approach to combining independent Earth-orientation series. J Geod 72(4):215–235. doi:10.1007/s001900050162

    Article  Google Scholar 

  • Halsig S, Artz T, Leek J, Nothnagel A (2014) VLBI analyses using covariance information from turbulence models. In: Behrend D, Baver K, Armstrong K (eds) Proceedings of the eighth IVS general meeting, pp 272–276

  • Heinkelmann R, Tesmer V (2013) Systematic inconsistencies between VLBI CRF and TRF solutions caused by different analysis options. In: Altamimi Z, Collilieux X (eds) Reference frames for applications in geosciences, international association of geodesy symposia, vol 138. Springer, Berlin, pp 181–189. doi:10.1007/978-3-642-32998-2_27

  • Herring TA, Davis JL, Shapiro II (1990) Geodesy by radio interferometry: the application of Kalman filtering to the analysis of very long baseline interferometry data. J Geophys Res Solid Earth 95(B8):12561–12581. doi:10.1029/JB095iB08p12561

    Article  Google Scholar 

  • IERS Conventions (2010) In: Petit G, Luzum B (eds) IERS technical note 36. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. J Fluids Eng 82(1):11 pp. doi:10.1115/1.3662552

  • Karbon M, Soja B, Nilsson T, Heinkelmann R, Liu L, Lu C, Mora-Diaz JA, Raposo-Pulido V, Xu M, Schuh H (2014) ERP estimation using a Kalman filter in VLBI. In: Behrend D, Baver K, Armstrong K (eds) Proceedings of the eighth IVS general meeting, pp 298–301

  • Krásná H, Malkin Z, Böhm J (2015) Non-linear VLBI station motions and their impact on the celestial reference frame and Earth orientation parameters. J Geod 89(10):1019–1033. doi:10.1007/s00190-015-0830-4

    Article  Google Scholar 

  • Kurtenbach E, Mayer-Gürr T, Eicker A (2009) Deriving daily snapshots of the Earth’s gravity field from GRACE L1B data using Kalman filtering. Geophys Res Lett 36(17):5 pp. doi:10.1029/2009GL039564

  • Li X, Ge M, Zhang H, Wickert J (2013) A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. J Geod 87(5):405–416. doi:10.1007/s00190-013-0611-x

    Article  Google Scholar 

  • Nilsson T, Soja B, Karbon M, Heinkelmann R, Schuh H (2015) Application of Kalman filtering in VLBI data analysis. Earth Planets Space 67(1):136. doi:10.1186/s40623-015-0307-y. http://www.earth-planets-space.com/content/67/1/136

  • Petrov L (2015) The international mass loading service. In: International association of geodesy symposia. Springer, Berlin (in print). doi:10.1007/1345_2015_218

  • Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi:10.1007/s10291-011-0248-2

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s Modern-Era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80. doi:10.1016/j.jog.2012.07.007

    Article  Google Scholar 

  • Schuh H, Böhm J (2013) Very long baseline interferometry for geodesy and astrometry. In: Xu G (ed) Sciences of geodesy II: innovations and future developments. Springer, Berlin

    Google Scholar 

  • Schüler T (2001) On ground-based GPS tropospheric delay estimation. PhD thesis, Studiengang Geodäsie und Geoinformation, Universität der Bundeswehr München

  • Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123. doi:10.1007/s00190-012-0567-2

    Article  Google Scholar 

  • Soja B, Nilsson T, Karbon M, Zus F, Dick G, Deng Z, Wickert J, Heinkelmann R, Schuh H (2015) Tropospheric delay determination by Kalman filtering VLBI data. Earth Planets Space 67(1):144. doi:10.1186/s40623-015-0293-0. http://www.earth-planets-space.com/content/67/1/144

  • Sośnica K, Thaller D, Dach R, Jäggi A, Beutler G (2013) Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results. J Geod 87(8):751–769. doi:10.1007/s00190-013-0644-1

    Article  Google Scholar 

  • Spicakova H, Plank L, Nilsson T, Böhm J, Schuh H (2011) Terrestrial reference frame solution with the Vienna VLBI Software VieVS and implication of tropospheric gradient estimation. In: Alef W, Bernhart S, Nothnagel A (eds) Proceedings of the 20th meeting of the European VLBI Group for geodesy and astrometry, pp 118–122

  • van Dam T, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavalle D, Larson KM (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28(4):651–654. doi:10.1029/2000GL012120

    Article  Google Scholar 

  • Webb FH, Zumberge JF (1993) An introduction to GIPSY/OASIS-II. JPL Publ, D-11088

  • Wijaya D, Böhm J, Karbon M, Kràsnà H, Schuh H (2013) Atmospheric pressure loading. In: Böhm J, Schuh H (eds) Atmospheric effects in space geodesy. Springer atmospheric sciences. Springer, Berlin, pp 137–157. doi:10.1007/978-3-642-36932-2_4

  • Wu X, Abbondanza C, Altamimi Z, Chin TM, Collilieux X, Gross RS, Heflin MB, Jiang Y, Parker JW (2015) KALREF—a Kalman filter and time series approach to the International Terrestrial Reference Frame realization. J Geophys Res Solid Earth, pp 3775–3802. doi:10.1002/2014JB011622

Download references

Acknowledgments

The authors thank the IVS for scheduling, observing, correlating, and providing the VLBI data used in this work. We thank the IMLS (http://massloading.net) for making publicly available the loading data used in this work and the IERS combination center at IGN for maintaining the ITRF. Benedikt Soja works under FWF Project P 24187-N21. Furthermore, the authors want to thank the associate editor and three anonymous reviewers who helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Soja.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00190-016-0953-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soja, B., Nilsson, T., Balidakis, K. et al. Determination of a terrestrial reference frame via Kalman filtering of very long baseline interferometry data. J Geod 90, 1311–1327 (2016). https://doi.org/10.1007/s00190-016-0924-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0924-7

Keywords

Navigation