Journal of Geodesy

, Volume 90, Issue 11, pp 1255–1278 | Cite as

Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: a low-cost and high-grade receivers GPS-BDS RTK analysis

Original Article

Abstract

The concept of single-frequency, dual-system (SF-DS) real-time kinematic (RTK) positioning has become feasible since, for instance, the Chinese BeiDou Navigation Satellite System (BDS) has become operational in the Asia-Pacific region. The goal of the present contribution is to investigate the single-epoch RTK performance of such a dual-system and compare it to a dual-frequency, single-system (DF-SS). As the SF-DS we investigate the L1 GPS + B1 BDS model, and for DF-SS we take L1, L2 GPS and B1, B2 BDS, respectively. Two different locations in the Asia-Pacific region are analysed with varying visibility of the BDS constellation, namely Perth in Australia and Dunedin in New Zealand. To emphasize the benefits of such a model we also look into using low-cost ublox single-frequency receivers and compare such SF-DS RTK performance to that of a DF-SS, based on much more expensive survey-grade receivers. In this contribution a formal and empirical analysis is given. It will be shown that with the SF-DS higher elevation cut-off angles than the conventional \(10^{\circ }\) or \(15^{\circ }\) can be used. The experiment with low-cost receivers for the SF-DS reveals (for the first time) that it has the potential to achieve comparable ambiguity resolution performance to that of a DF-SS (L1, L2 GPS), based on the survey-grade receivers.

Keywords

Low-cost receiver High-grade receiver Multi-GNSS BeiDou (BDS) GPS Integer ambiguity resolution Real time kinematic (RTK) positioning 

References

  1. Axelrad P, Larson K, Jones B (2005) Use of the correct satellite repeat period to characterize and reduce site-specific multipath errors. In: Proceedings of ION GNSS 18th international technical meeting of the satellite division, Long Beach, CAGoogle Scholar
  2. Cao W, O’Keefe K, Cannon M (2008) Evaluation of COMPASS ambiguity resolution performance using geometric-based techniques with comparison to GPS and Galileo. In: Proceedings of the ION GNSS, Savannah, GAGoogle Scholar
  3. Chen H, Huang Y, Chiang K, Yang M, Rau R (2009) The performance comparison between GPS and BeiDou-2/COMPASS: a perspective from Asia. J Chin Inst Eng 32(5):679–689CrossRefGoogle Scholar
  4. CSNO (2013) BeiDou navigation satellite system signal in space interface control document: open service signal, version 2.0, China satellite navigation office. Technical report, available on the internetGoogle Scholar
  5. Deng C, Tang W, Liu J, Shi C (2014) Reliable single-epoch ambiguity resolution for short baselines using combined GPS/BeiDou system. GPS Solut 18(3):375–386. doi:10.1007/s10291-013-0337-5 CrossRefGoogle Scholar
  6. Euler HJ, Goad C (1991) On optimal filtering of GPS dual frequency observations without using orbit information. Bull Geod 65:130–143CrossRefGoogle Scholar
  7. Goad C (1998) Short distance GPS models (Ch 11). In: Teunissen, Kleusberg (eds.) GPS for geodesy, 2nd edn, pp 457–482Google Scholar
  8. GPS World (2015) China launches first of next-Gen BeiDou satellites. GPS World March 30. http://gpsworld.com/secretive-beidou-launch-unconfirmed/. Viewed 9/5/2015
  9. Grelier T, Ghion A, Dantepal J, Ries L, DeLatour A, Issler JL, Avila-Rodriguez J, Wallner S, Hein G (2007) Compass signal structure and first measurements. In: Proceedings of the ION GNSS, Fort Worth, TX, pp 3015n++–3024Google Scholar
  10. He X, Zhang X (2015) Characteristics analysis of Beidou Melbourne–Wubbena combination. In: Sun et al. (eds) Lecture notes in electrical engineering 342, vol 3. doi:10.1007/978-3-662-46632-2_3
  11. He H, Li J, Yang Y, Xu J, Guo H, Wang A (2014) Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solut 18(3):393–403. doi:10.1007/s10291-013-0339-3 CrossRefGoogle Scholar
  12. Ji S, Chen W, Zhao C, Ding X, Chen Y (2007) Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods. GPS Solut 11(4):259–268CrossRefGoogle Scholar
  13. Jiang Y, Yang S, Zhang G, Li G (2011) Coverage performance analysis on combined-GEO-IGSO satellite constellation. J Electron 28(2):228–234Google Scholar
  14. Li J, Yang Y, Xu J, He H, Guo H, Wang A (2013a) Performance analysis of single-epoch dual-frequency RTK by BeiDou navigation satellite system. In: Sun et al. (eds) Lecture notes in electrical engineering, Chapter 12, vol 3, pp 133–143Google Scholar
  15. Li W, Teunissen PJG, Zhang B, Verhagen S (2013b) Precise point positioning using GPS and compass observations. In: Sun et al. (eds) Lecture notes in electrical engineering, Chapter 33, vol 2, pp 367–378Google Scholar
  16. Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222. doi:10.1007/s10291-012-0272-x CrossRefGoogle Scholar
  17. Nadarajah N, Teunissen PJG, Raziq N (2013) BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination. Sensors 13(7):9435–9463CrossRefGoogle Scholar
  18. Nadarajah N, Khodabandeh A, Teunissen PJG (2015) Assessing the IRNSS L5-signal in combination with GPS, Galileo, and QZSS L5/E5a-signals for positioning and navigation. GPS Solut. doi:10.1007/s10291-015-0450-8
  19. Odijk D, Teunissen PJG (2008) ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models. J Geod 82:473CrossRefGoogle Scholar
  20. Odijk D, Teunissen PJG (2013) Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solut 17(4):521–533CrossRefGoogle Scholar
  21. Odolinski R, Teunissen PJG, Odijk D (2013) An analysis of combined COMPASS/BeiDou-2 and GPS single- and multiple-frequency RTK positioning. In: Proceedings of the ION Pacific PNT, Honolulu, HI, pp 69–90Google Scholar
  22. Odolinski R, Teunissen PJG, Odijk D (2014a) Combined GPS+BDS+Galileo+QZSS for long baseline RTK positioning. In: ION GNSS, Tampa, Florida, USAGoogle Scholar
  23. Odolinski R, Teunissen PJG, Odijk D (2014b) First combined COMPASS/BeiDou-2 and GPS positioning results in Australia. Part II: single- and multiple-frequency single-baseline RTK positioning. J Spat Sci 59(1):25–46Google Scholar
  24. Odolinski R, Teunissen PJG, Odijk D (2015a) Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solut 19(1):151–163. doi:10.1007/s10291-014-0376-6 CrossRefGoogle Scholar
  25. Odolinski R, Teunissen PJG, Odijk D (2015b) Combined GPS + BDS for short to long baseline RTK positioning. Meas Sci Technol 26:045801. doi:10.1088/0957-0233/26/4/045801 CrossRefGoogle Scholar
  26. Paziewski J, Wielgosz P (2015) Accounting for Galileo-GPS inter-system biases in precise satellite positioning. J Geod 89(1):81–93. doi:10.1007/s00190-014-0763-3 CrossRefGoogle Scholar
  27. Paziewski J, Sieradzki R, Wielgosz P (2015) Selected properties of GPS and Galileo-IOV receiver intersystem biases in multi-GNSS data processing. Meas Sci Technol 26(9):095008. doi:10.1088/0957-0233/26/9/09500 CrossRefGoogle Scholar
  28. Pesyna KM, Heath R, Humphreys TE (2014) Centimeter positioning with a smartphone-quality GNSS antenna. In: Proceedings of the ION GNSS, Tampa, FLGoogle Scholar
  29. Shi C, Zhao Q, Li M, Tang W, Hu Z, Lou Y, Zhang H, Niu X, Liu J (2012) Precise orbit determination of Beidou Satellites with precise positioning. Sci China Earth Sci 55:1079–1086. doi:10.1007/s11430-012-4446-8 CrossRefGoogle Scholar
  30. Shi C, Zhao Q, Hu Z, Liu J (2013) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut 17(1):103–119. doi:10.1007/s10291-012-0264-x CrossRefGoogle Scholar
  31. Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of COMPASS GEO and IGSO satellites. J Geod. doi:10.1007/s00190-013-0625-4 Google Scholar
  32. Takasu T, Yasuda A (2009) Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In: International symposium on GPS/GNSS, pp 1–6Google Scholar
  33. Teunissen PJG (1990) An integrity and quality control procedure for use in multi sensor integration. In: Proceedings of the 3rd international technical meeting of the Satellite Division of the Institute of Navigation (ION GPS 1990), Colorado Spring, CO, pp 513–522. Also published in: Volume VII of the GPS Red Book: Integrated systems, ION Navigation, 2012Google Scholar
  34. Teunissen PJG (1995) The least squares ambiguity decorrelation adjustment: a method for fast GPS integer estimation. J Geod 70:65–82CrossRefGoogle Scholar
  35. Teunissen PJG (1997a) A canonical theory for short GPS baselines. Part I: the baseline precision. J Geod 71(6):320–336Google Scholar
  36. Teunissen PJG (1997b) A canonical theory for short GPS baselines. Part II: the ambiguity precision and correlation. J Geod 71(7):389–401Google Scholar
  37. Teunissen PJG (1997c) A canonical theory for short GPS baselines. Part III: the geometry of the ambiguity search space. J Geod 71(8):486–501Google Scholar
  38. Teunissen PJG (1997d) A canonical theory for short GPS baselines. Part IV: precision versus reliability. J Geod 71(9):513–525Google Scholar
  39. Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72:606–612CrossRefGoogle Scholar
  40. Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73:587–593CrossRefGoogle Scholar
  41. Teunissen PJG, Verhagen S (2009) The GNSS ambiguity ratio-test revisited: a better way of using it. Surv Rev 41(312):138–151CrossRefGoogle Scholar
  42. Teunissen PJG, de Jonge P, Tiberius C (1996) The volume of the GPS ambiguity search space and its relevance for integer ambiguity resolution. In: Proceedings of the ION GPS, vol 9, pp 889–898Google Scholar
  43. Teunissen PJG, Odolinski R, Odijk D (2014) Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles. J Geod 88(4):335–350CrossRefGoogle Scholar
  44. Verhagen S (2005) On the reliability of integer ambiguity resolution. Navigation 52(2):99–110CrossRefGoogle Scholar
  45. Verhagen S, Teunissen PJG (2013) The ratio test for future GNSS ambiguity resolution. GPS Solut 17(4):535–548. doi:10.1007/s10291-012-0299-z CrossRefGoogle Scholar
  46. Verhagen S, Teunissen PJG (2014) Ambiguity resolution performance with GPS and BeiDou for LEO formation flying. J Adv Space Res 54(5):830–839. doi:10.1016/j.asr.2013.03.007 CrossRefGoogle Scholar
  47. Verhagen S, Li B, Teunissen PJG (2013) Ps-LAMBDA: ambiguity success rate evaluation software for interferometric applications. Comput Geosci 54:361–376CrossRefGoogle Scholar
  48. Wang G, de Jong K, Zhao Q, Hu Z, Guo J (2015a) Multipath analysis of code measurements for BeiDou geostationary satellites. GPS Solut 19:129–139. doi:10.1007/s10291-014-0374-8 CrossRefGoogle Scholar
  49. Wang M, Chai H, Liu J, Zeng A (2015) BDS relative static positioning over long baseline improved by GEO multipath mitigation. Adv Space Res. doi:10.1016/j.asr.2015.11.032 Google Scholar
  50. Wisniewski B, Bruniecki K, Moszynski M (2013) Evaluation of RTKLIB’s positioning accuracy using low-cost GNSS receiver and ASG-EUPOS. Int J Mar Navig Saf Sea Transp 7(1):79–85CrossRefGoogle Scholar
  51. Yang Y, Li J, Xu J, Tang J, Guo H, He H (2011) Contribution of the Compass satellite navigation system to global PNT users. Chin Sci Bull 56(26):2813–2819CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.National School of SurveyingUniversity of OtagoDunedinNew Zealand
  2. 2.Department of Spatial Sciences, GNSS Research CentreCurtin University of TechnologyPerthAustralia
  3. 3.Department of Geoscience and Remote SensingDelft University of TechnologyDelftThe Netherlands

Personalised recommendations