Journal of Geodesy

, Volume 90, Issue 7, pp 611–630 | Cite as

The IGS contribution to ITRF2014

  • Paul Rebischung
  • Zuheir Altamimi
  • Jim Ray
  • Bruno Garayt
Original Article


Following the first reprocessing campaign performed by the International GNSS Service (IGS) in 2008, a second reprocessing campaign (repro2) was finalized in 2015. Nine different Analysis Centers (ACs) reanalyzed the history of GNSS data collected by a global tracking network back to 1994 using the latest available models and methodology, and provided daily terrestrial frame solutions among other products. Daily combinations of the AC terrestrial frame solutions provided the IGS input to the next release of the International Terrestrial Reference Frame (ITRF2014). From weighted root mean squares values of the residuals of the daily repro2 combinations, the overall inter-AC level of agreement is assessed to be 1.5 mm for the horizontal components and 4 mm for the vertical component of station positions, 25–40 \(\upmu \)as for pole coordinates, 140–200 \(\upmu \)as/day for pole rates, 8–20 \(\upmu \)s/day for calibrated length-of-day estimates, 4 mm for the X and Y components of geocenter motion, 8 mm for its Z component and 0.5 mm for the terrestrial scale. On the long term, the origins (resp. scales) of the AC terrestrial frames show relative offsets and rates within \(\pm \)3 mm and \(\pm \)0.3 mm/year (resp. \(\pm \)0.5 mm and \(\pm \)0.05 mm/year). The combination residuals also present AC-specific features, some of which are explained by known analysis specifics, while others remain under investigation.


IGS GNSS Reprocessing ITRF  Terrestrial reference frame Combination 



We thank all participating Analysis Centers for the huge efforts they invested into the second IGS reprocessing campaign.

Supplementary material

190_2016_897_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (pdf 2171 KB)


  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112(B9). doi: 10.1029/2007JB004949
  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  3. Altamimi Z, Collilieux X, Rebischung P, Métivier L (2015) 1985–2015: thirty years of R&D on the International Terrestrial Reference Frame. In: Abstract presented at IUGG general assembly, PragueGoogle Scholar
  4. Argus DF (2012) Uncertainty in the velocity between the mass center and surface of Earth. J Geophys Res 117(B10). doi: 10.1029/2012JB009196
  5. Collilieux X, Schmid R (2012) Evaluation of the ITRF2008 GPS vertical velocities using satellite antenna \(z\)-offsets. GPS Solut 17(2):237–246. doi: 10.1007/s10291-012-0274-8 CrossRefGoogle Scholar
  6. Collilieux X, Métivier L, Altamimi Z, van Dam T, Ray J (2011) Quality assessment of GPS reprocessed terrestrial reference frame. GPS Solut 15(3):219–231. doi: 10.1007/s10291-010-0184-6 CrossRefGoogle Scholar
  7. Collilieux X, van Dam T, Ray J, Coulot D, Métivier L, Altamimi Z (2012) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod 86(1):1–14. doi: 10.1007/s00190-011-0487-6 CrossRefGoogle Scholar
  8. Collilieux X, Altamimi Z, Argus DF, Boucher C, Dermanis A, Haines BJ, Herring TA, Kreemer CW, Lemoine FG, Ma C, MacMillan DS, Mäkinen J, Métivier L, Ries J, Teferle FN, Wu X (2014) External evaluation of the Terrestrial Reference Frame: report of the task force of the IAG sub-commission 1.2. In: Rizos C, Willis P (eds) Proceedings of the XXV IUGG general assembly. IAG Symp, vol 139. Springer, Berlin, pp 197–202. doi: 10.1007/978-3-642-37222-3_25
  9. Dilssner F (2010) GPS IIF-1 satellite antenna phase center and attitude modeling. Inside GNSS 5(6):59–64Google Scholar
  10. Dilssner F, Springer T, Gienger G, Dow J (2011) The GLONASS-M satellite yaw-attitude model. Adv Space Res 47(1):160–171. doi: 10.1016/j.asr.2010.09.007 CrossRefGoogle Scholar
  11. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  12. Ferland R, Kouba J, Hutchison D (2000) Analysis methodology and recent results of the IGS network combination. Earth Planets Space 52(11):953–957. doi: 10.1186/BF03352311 CrossRefGoogle Scholar
  13. Ge M, Gendt G, Dick G, Zhang FP, Reigber C (2005) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32(6). doi: 10.1029/2004GL022224
  14. Griffiths J, Choi K (2013) Analysis center coordinator report. In: Dach R, Jean Y (eds) International GNSS service technical report 2012. Astronomical Institute, University of Bern, pp 21–34Google Scholar
  15. Johnson TJ, Kammeyer P, Ray J (2001) The effects of geophysical fluids on motions of the global positioning system satellites. Geophys Res Lett 28(17):3329–3332. doi: 10.1029/2001GL013180 CrossRefGoogle Scholar
  16. Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13(1):1–12. doi: 10.1007/s10291-008-0092-1 CrossRefGoogle Scholar
  17. Meindl M, Beutler G, Thaller D, Dach R, Jäggi A (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. doi: 10.1016/j.asr.2012.10.026 CrossRefGoogle Scholar
  18. Penna NT, Stewart MP (2003) Aliased tidal signatures in continuous GPS height time series. Geophys Res Lett 30(23):2184. doi: 10.1029/2003GL018828 CrossRefGoogle Scholar
  19. Petit G, Luzum B, IERS Conventions (2010) IERS technical note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  20. Press W, Teukolsky S, Vetterling W, Flannery B (1996) Numerical recipes in C. Cambridge University Press, CambridgeGoogle Scholar
  21. Ray JR (1996) Measurements of length of day using the global positioning system. J Geophys Res 101(B9):20,141–20,149. doi: 10.1029/96JB01889
  22. Ray JR (2009) A quasi-optimal, consistent approach for combination of UT1 and LOD. In: Drewes H (ed) Geodetic reference frames. IAG Symp, vol 134. Springer, Berlin, pp 239–243. doi: 10.1007/978-3-642-00860-3_37
  23. Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1):55–64. doi: 10.1007/s10291-007-0067-7
  24. Ray J, Griffiths J, Collilieux X, Rebischung P (2013a) Subseasonal GNSS positioning errors. Geophys Res Lett 40(22):5854–5860. doi: 10.1002/2013GL058160
  25. Ray JR, Rebischung P, Schmid R (2013b) Dependence of IGS products on the ITRF datum. In: Altamimi Z, Collilieux X (eds) Reference frames for applications in geosciences. IAG Symp, vol 138. Springer, Berlin, pp 63–67. doi: 10.1007/978-3-642-32998-2_11
  26. Rebischung P (2014) Can GNSS contribute to improving the ITRF definition? PhD thesis, Ecole Doctorale Astronomie et Astrophysique d’Ile-de-France. Accessed 5 Apr 2016
  27. Rebischung P, Garayt B (2013) Recent results from the IGS terrestrial frame combinations. In: Altamimi Z, Collilieux X (eds) Reference frames for applications in geosciences. IAG Symp, vol 138. Springer, Berlin, pp 69–74. doi: 10.1007/978-3-642-32998-2_12
  28. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi: 10.1007/s10291-011-0248-2 CrossRefGoogle Scholar
  29. Rebischung P, Garayt B, Collilieux X, Altamimi Z (2013) IGS reference frame working group coordinator report. In: Dach R, Jean Y (eds) International GNSS service technical report 2012. Astronomical Institute, University of Bern, pp 171–178Google Scholar
  30. Rebischung P, Altamimi Z, Springer T (2014) A collinearity diagnosis of the GNSS geocenter determination. J Geod 88(1):65–85. doi: 10.1007/s00190-013-0669-5 CrossRefGoogle Scholar
  31. Rodriguez-Solano C, Hugentobler U, Steigenberger P (2011a) Earth radiation pressure model for GNSS satellites. In: Abstract EGU2011-9824 presented at EGU general assembly, ViennaGoogle Scholar
  32. Rodriguez-Solano CJ, Hugentobler U, Steigenberger P, Lutz S (2011b) Impact of earth radiation pressure on GPS position estimates. J Geod 86(5):309–317. doi: 10.1007/s00190-011-0517-4 CrossRefGoogle Scholar
  33. Scargle J (1982) Studies in astronomical time series analysis. II—statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853. doi: 10.1086/160554 CrossRefGoogle Scholar
  34. Sillard P (1999) Modélisation des systèmes de référence terrestres. PhD thesis, Observatoire de ParisGoogle Scholar
  35. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111(B5). doi: 10.1029/2005JB003747
  36. Steigenberger P, Rothacher M, Fritsche M, Rülke A, Dietrich R (2009) Quality of reprocessed GPS satellite orbits. J Geod 83(3–4):241–248. doi: 10.1007/s00190-008-0228-7 CrossRefGoogle Scholar
  37. Vondrák J (1969) A contribution to the problem of smoothing observational data. B Astron I Czech 20(6):349–355Google Scholar
  38. Vondrák J (1977) Problem of smoothing observational data II. B Astron I Czech 28(2):84–89Google Scholar
  39. Wu X, Collilieux X, Altamimi Z, Vermeersen BLA, Gross RS, Fukumori I (2011) Accuracy of the International Terrestrial Reference Frame origin and earth expansion. Geophys Res Lett 38(13):L13,304. doi: 10.1029/2011GL047450
  40. Zhu SY, Massmann FH, Yu Y, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76(11–12):668–672. doi: 10.1007/s00190-002-0294-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Paul Rebischung
    • 1
  • Zuheir Altamimi
    • 1
  • Jim Ray
    • 2
  • Bruno Garayt
    • 3
  1. 1.IGN LAREG, Univ Paris Diderot, Sorbonne Paris CitéParis Cedex 13France
  2. 2.National Oceanic and Atmospheric AdministrationNational Geodetic SurveyMarylandUSA
  3. 3.IGN SGNSaint-Mandé CedexFrance

Personalised recommendations