Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis

Abstract

The characterization of the accuracy of ionospheric models currently used in global navigation satellite systems (GNSSs) is a long-standing issue. The characterization remains a challenging problem owing to the lack of sufficiently accurate slant ionospheric determinations to be used as a reference. The present study proposes a methodology based on the comparison of the predictions of any ionospheric model with actual unambiguous carrier-phase measurements from a global distribution of permanent receivers. The differences are separated as hardware delays (a receiver constant plus a satellite constant) per day. The present study was conducted for the entire year of 2014, i.e. during the last solar cycle maximum. The ionospheric models assessed are the operational models broadcast by the global positioning system (GPS) and Galileo constellations, the satellite-based augmentation system (SBAS) (i.e. European Geostationary Navigation Overlay System (EGNOS) and wide area augmentation system (WAAS)), a number of post-process global ionospheric maps (GIMs) from different International GNSS Service (IGS) analysis centres (ACs) and, finally, a more sophisticated GIM computed by the research group of Astronomy and GEomatics (gAGE). Ionospheric models based on GNSS data and represented on a grid (IGS GIMs or SBAS) correct about 85 % of the total slant ionospheric delay, whereas the models broadcasted in the navigation messages of GPS and Galileo only account for about 70 %. Our gAGE GIM is shown to correct 95 % of the delay. The proposed methodology appears to be a useful tool to improve current ionospheric models.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    The measurements are corrected from the receiver and satellite antenna phase centres and satellite wind up.

References

  1. Azpilicueta F, Brunini C, Radicella S (2006) Global ionospheric maps from GPS observations using MODIP latitude. Adv Space Res 38(11):2324–2331. doi:10.1016/j.asr.2005.07.069

    Article  Google Scholar 

  2. Banville S, Zhang W, Langley R (2013) Monitoring the ionosphere with integer-levelled GPS measurements. GPS World 24(3):43–49

    Google Scholar 

  3. Beutler G, Rothacher M, Schaer S, Springer T, Kouba J, Neilan R (1999) The International GPS Service (IGS): an interdisciplinary service in support of Earth sciences. Adv Space Res 23(4):631–653. doi:10.1016/S0273-1177(99)00160-X. http://www.sciencedirect.com/science/article/pii/S027311779900160X

  4. Bust GS, Mitchell CN (2008) History, current state, and future directions of ionospheric imaging. Rev Geophys 46(1): doi:10.1029/2006RG000212

  5. China Satellite Navigation Office (2012) BeiDou Navigation Satellite System Signal in Space. Interface Control Document

  6. Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120. doi:10.1007/s00190-006-0093-1

  7. Collins P, Lahaye F, Heroux P, Bisnath S (2008) Precise point positioning with ambiguity resolution using the decoupled clock model. Proceedings of ION GNSS 2008, Savannah, pp 1315–1322

  8. Dach R, Jean Y (2014) IGS Technical Report 2013. Tech. rep., Pasadena

  9. Datta-Barua S, Walter T, Altshuler E, Blanch J, Enge P (2005) Dst as an indicator of potential threats to WAAS integrity and availability. In: Proceedings of ION GPS 2005, USA, pp 2365–2373

  10. Di Giovanni G, Radicella S (1990) An analytical model of the electron density profile in the ionosphere. Adv Space Res 10(11):27–30

    Article  Google Scholar 

  11. Dow J, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83:191–198. doi:10.1007/s00190-008-0300-3

  12. ECAC (1955) Constitution and Rules of Procedure of the European Civil Aviation Conference (ECAC), Paris

  13. ESA (2014) ICASES: Ionospheric Conditions and Associated Scenarios for EGNOS Selected from the last Solar Cycle. PO1520026618/01

  14. Fu LL, Christensen EJ, Yamarone CA, Lefebvre M, Mnard Y, Dorrer M, Escudier P (1994) TOPEX/POSEIDON mission overview. J Geophys Res Oceans 99(12):24,369–24,381. doi:10.1029/94JC01761

  15. Galileo SIS ICD, EU (2010) Galileo Open Service Signal In Space Control Document (OS SIS IDC), issue 1.1. http://ec.europa.eu/enterprise/policies/satnav/galileo/open-service/index_en.htm

  16. García-Fernández M, Hernández-Pajares M, Juan JM, Sanz J, Orús R, Coisson P, Nava B, Radicella SM (2003) Combining ionosonde with ground GPS data for electron density estimation. J Atmos Solar Terr Phys 65:683–691. doi:10.1016/S1364-6826(03)00085-3. http://adsabs.harvard.edu/abs/2003JASTP..65..683G

  17. Ge M, Gendt M, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82:389–399

    Article  Google Scholar 

  18. González-Casado G, Juan JM, Sanz J, Rovira-Garcia A, Aragon-Angel A (2015) Ionospheric and plasmaspheric electron contents inferred from radio occultations and global ionospheric maps. J Geophys Res Space Phys 120(7):5983–5997. doi:10.1002/2014JA020807

  19. Hernández-Pajares M, Juan JM, Sanz J, Colombo OL (2002) Improving the real-time ionospheric determination from GPS sites at very long distances over the equator. J Geophys Res Space Phys 107(A10):1296–1305. doi:10.1029/2001JA009203

    Article  Google Scholar 

  20. IGS Products (2014) http://www.igs.org/products/data

  21. Imel DA (1994) Evaluation of the TOPEX/POSEIDON dual-frequency ionosphere correction. J Geophys Res Oceans 99(C12):24,895–24,906. doi:10.1029/94JC01869

  22. IS-GPS-200 (2010) GPS Interface Specification IS-GPS-200. Revision E. http://www.gps.gov/technical/icwg/is-gps-200e.pdf

  23. Jee G, Lee HB, Kim YH, Chung JK, Cho J (2010) Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective. J Geophys Res Space Phys 115(A10). doi:10.1029/2010JA015432

  24. Juan J, Rius A, Hernández-Pajares M, Sanz J (1997) A two-layer model of the ionosphere using global positioning system data. Geophys Res Lett 24(4):393–396. doi:10.1029/97GL00092

    Article  Google Scholar 

  25. Juan J, Hernández-Pajares M, Sanz J, Ramos-Bosch P, Aragon-Angel A, Orús R, Ochieng W, Feng S, Coutinho P, Samson J, Tossaint M (2012) Enhanced precise point positioning for GNSS Users. IEEE Transactions on Geoscience and Remote Sensing 101109/TGRS20122189888

  26. Klobuchar J (1987) Ionospheric time-delay algorithms for single-frequency GPS users. IEEE Trans Aerosp Electron Syst AES 23(3):325–331

  27. Lanyi GE, Roth T (1988) A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci 23(4):483–492. doi:10.1029/RS023i004p00483

  28. Laurichesse D, Mercier F (2007) Integer Ambiguity resolution on undifferenced gps phase measurements and its application to PPP. In: Proceedings of the 20th International technical meeting of the satellite division. institute of navigation, Fort Worth, pp 839–848

  29. Lee HB, Jee G, Kim YH, Shim JS (2013) Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite. J Geophys Res Space Phys 118(2):935–946. doi:10.1002/jgra.50130

  30. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582. doi:10.1029/97RS02707

  31. Mervart L, Lukes Z, Rocken C, Iwabuchi T (2008) Precise point positioning with ambiguity resolution in real-time. In: Proceedings of ION GNSS 2008. Savannah, pp 397–405

  32. Misra P, Enge P (2001) Global positioning system: signals, measurements and performance. Ganga-Jamuna Press, Lincoln

  33. Montenbruck O, Hauschild A, Steigenberger P (2014) Differential code bias estimation using multi-GNSS observations and global ionosphere maps. Navigation 61(3):191–201. doi:10.1002/navi.64

  34. Orús R, Hernández-Pajares M, Juan J, García-Fernández M (2003) Validation of the GPS TEC maps with TOPEX data. Adv Space Res 31(3):621–627. doi:10.1016/S0273-1177(03)00026-7

    Article  Google Scholar 

  35. PCT/EP2011/001512 (2011) Hernández-Pajares, M. and Juan, JM. and Sanz, J. and Samson, J. and Tossaint, M. Method, apparatus and system for determining a position of an object having a global navigation satellite system receiver by processing undifferenced data like carrier phase measurements and external products like ionosphere data. (ESA ref: ESA/PAT/566)

  36. Prieto-Cerdeira R, Orús-Pérez R, Breeuwer E, Lucas-Rodriguez R, Falcone M (2014) The European way: assessment of NeQuick ionospheric model for galileo single-frequency users. GPS World 25(6):53–58. http://gpsworld.com/innovation-the-european-way

  37. Rawer K (1963) Propagation of decameter waves (HF-band) In: Landmark, B (ed) Meteorological and astronomical influences on radio wave propagation. Pergamon Press, New York

  38. Rovira-Garcia A, Juan J, Sanz J, González-Casado G (2015) A worldwide ionospheric model for fast precise point positioning. Geosci Remote Sens IEEE Trans 53(8):4596–4604. doi:10.1109/TGRS.2015.2402598

    Article  Google Scholar 

  39. RTCA (2006) Minimum operational performance standards for global positioning system/wide area augmentation system airborne equipment. RTCA Document 229-C

  40. Sanz J, Rovira-Garcia A, Hernández-Pajares M, Juan JM, Ventura-Traveset J, López-Echazarreta C, Hein G (2012) The ESA/UPC GNSS-Lab Tool (gLAB): an advanced educational and professional package for GNSS data processing and analysis. In: Proceedings of Toulouse Space Show 2012, 4th international conference on space applications, Toulouse

  41. Sanz J, Juan J, Hernández-Pajares M (2013) GNSS data processing, vol I: fundamentals and algorithms. ESA Communications, ESTEC TM-23/1, Noordwijk

  42. Sanz J, Juan J, González-Casado G, Prieto-Cerdeira R, Schlüeter S, Orús R (2014) Novel ionospheric activity indicator specifically tailored for GNSS users. In: Proceedings of ION GNSS+ 2014. Tampa, pp 1173–1182

  43. Schaer S, Gurtner W, Feltens J (1998) IONEX: the IONosphere map exchange format version 1. In: Proceeding of the IGS AC Workshop. Darmstadt, pp 233–247

  44. Wübbena G (1988) GPS carrier phases and clock modeling. In: Groten E, Strau R (eds) GPS-techniques applied to geodesy and surveying, lecture notes in earth sciences, vol 19. Springer, Berlin, Heidelberg, pp 381–392. doi:10.1007/BFb0011350

Download references

Acknowledgments

The authors acknowledge the use of data and products provided by the International GNSS Service.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Rovira-Garcia.

Additional information

This work was partially sponsored by the European Space Agency (ESA) Networking/ Partnering Initiative (NPI) with the industrial partner FUGRO. The Technical University of Catalonia (UPC) contributed with an FPI-UPC grant. Work was conducted within the ESA/ICASES project.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rovira-Garcia, A., Juan, J.M., Sanz, J. et al. Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis. J Geod 90, 229–240 (2016). https://doi.org/10.1007/s00190-015-0868-3

Download citation

Keywords

  • Ionospheric modelling
  • GPS
  • Galileo
  • EGNOS
  • WAAS
  • IGS