Skip to main content

A consistent combination of GNSS and SLR with minimum constraints

An Erratum to this article was published on 26 September 2015

Abstract

In this article, the realization of a global terrestrial reference system (TRS) based on a consistent combination of Global Navigation Satellite System (GNSS) and Satellite Laser Ranging (SLR) is studied. Our input data consists of normal equation systems from 17 years (1994–2010) of homogeneously reprocessed GPS, GLONASS and SLR data. This effort used common state of the art reduction models and the same processing software (Bernese GNSS Software) to ensure the highest consistency when combining GNSS and SLR. Residual surface load deformations are modeled with a spherical harmonic approach. The estimated degree-1 surface load coefficients have a strong annual signal for which the GNSS- and SLR-only solutions show very similar results. A combination including these coefficients reduces systematic uncertainties in comparison to the single-technique solution. In particular, uncertainties due to solar radiation pressure modeling in the coefficient time series can be reduced up to 50 % in the GNSS+SLR solution compared to the GNSS-only solution. In contrast to the ITRF2008 realization, no local ties are used to combine the different geodetic techniques. We combine the pole coordinates as global ties and apply minimum constraints to define the geodetic datum. We show that a common origin, scale and orientation can be reliably realized from our combination strategy in comparison to the ITRF2008.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res 107(B10):2214. doi:10.1029/2001JB000561

    Article  Google Scholar 

  2. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112(B09):401. doi:10.1029/2007JB004949

    Google Scholar 

  3. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  4. Bizouard C, Gambis D (2011) The combined solution C04 for Earth Orientation Parameters consistent with International Terrestrial Reference Frame 2008. http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf

  5. Blewitt G, Lavallée D, Clarke P, Nurutdinov K (2001) A new global mode of earth deformation: seasonal cycle detected. Science 294:2342–2345. doi:10.1126/science.1065328

    Article  Google Scholar 

  6. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2):2103. doi:10.1029/2002JB002082

    Article  Google Scholar 

  7. Boucher C, Altamimi Z, Duhem L (1992) ITRF 91 and its associated velocity field. IERS Technical Note 12

  8. Brockmann E (1997) Combination of solutions for geodetic and geodynamic applications of the Global Positioning System (GPS), Geodätisch-geophysikalische Arbeiten in der Schweiz, vol 55. Schweizerische Geodätische Kommission

  9. Collilieux X, Wöppelmann G (2011) Global sea-level rise and its relation to the terrestrial reference frame. J Geod 85(1):9–22. doi:10.1007/s00190-010-0412-4

    Article  Google Scholar 

  10. Coulot D, Berio P, Biancale R, Loyer S, Soudarin L, Gontier AM (2007) Toward a direct combination of space-geodetic techniques at the measurement level: Methodology and main issues. J Geophys Res Solid Earth 112(B5): doi:10.1029/2006JB004336

  11. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Switzerland

  12. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1–2):105–134. doi:10.1016/S0022-1694(02)00283-4

    Article  Google Scholar 

  13. Farrell W (1972) Deformation of the earth by surface loads. Rev Geophys Space Phys 10(3):761–797. doi:10.1029/RG010i003p00761

    Article  Google Scholar 

  14. Fritsche M, Dietrich R, Rlke A, Rothacher M, Steigenberger P (2010) Low-degree earth deformation from reprocessed GPS observations. GPS Solut 14:165–175. doi:10.1007/s10291-009-0130-7

    Article  Google Scholar 

  15. Fritsche M, Sośnica K, Rodríguez-Solano C, Steigenberger P, Wang K, Dietrich R, Dach R, Hugentobler U, Rothacher M (2014) Homogeneous reprocessing of GPS. GLONASS and SLR observations. J Geod 88(7):625–642. doi:10.1007/s00190-014-0710-3

    Article  Google Scholar 

  16. Gross RS, Eubanks TM, Steppe JA, Freedman AP, Dickey JO, Runge TF (1998) A Kalman-filter-based approach to combining independent Earth-orientation series. J Geod 72(4):215–235. doi:10.1007/s001900050162

    Article  Google Scholar 

  17. Hobiger T, Otsubo T (2014) Combination of GPS and VLBI on the observation level during CONT11—common parameters, ties and inter-technique biases. J Geod 88(11):1017–1028. doi:10.1007/s00190-014-0740-x

    Article  Google Scholar 

  18. Kotsakis C (2012) Reference frame stability and nonlinear distortion in minimum-constrained network adjustment. J Geod 86(9):755–774. doi:10.1007/s00190-012-0555-6

    Article  Google Scholar 

  19. Kovalevsky J, Mueller I, Kolaczek B (eds) (1989) Reference Frames in Astronomy and Geophysics. Astrophysics and Space Science Library. Kluwer Academic Publishers, Dortrecht/Boston/London

  20. Lavallée D, van Dam T, Blewitt G, Clarke P (2006) Geocenter motions from GPS: a unified observation model. J Geophys Res 111(B05):405. doi:10.1029/2005JB003784

    Google Scholar 

  21. Meindl M, Beutler G, Thaller D, Dach R, Jäggi A (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. doi:10.1016/j.asr.2012.10.026

    Article  Google Scholar 

  22. Ostini L (2012) Analysis and Quality Assessment of GNSS-Derived Parameter Time Series. Ph.D. thesis, Philosophisch-naturwissenschaftliche Fakultät der Universität Bern

  23. Ostini L, Dach R, Meindl M, Schaer S, Hugentobler U (2009) FODITS: a new tool of the Bernese GPS Software. In: EUREF 2008 Proceedings

  24. Pavlis E (2009) SLRF2008: The ILRS Reference Frame for SLR POD Contributed to ITRF2008. Ocean Surface Topography Science Team Meeting, Seattle, USA

  25. Pearlman M, Degnan J, Bosworth J (2002) The international laser ranging service. Adv Space Res 30(2):135–143

    Article  Google Scholar 

  26. Petit G, Luzum B (eds) (2010) IERS Conventions (2010), IERS Technical Note, vol 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany

  27. Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109(B03):405. doi:10.1029/2003JB002500

    Google Scholar 

  28. Plag HP, Pearlman M (eds) (2009) Global Geodetic Observing System: Meeting the Requirements of a Global Society on a Changing Planet in 2020. Springer, Berlin Heidelberg, doi:10.1007/978-3-642-02687-4_1

  29. Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1):55–64. doi:10.1007/s10291-007-0067-7

    Article  Google Scholar 

  30. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi:10.1007/s10291-011-0248-2

    Article  Google Scholar 

  31. Rietbroek R, Fritsche M, Brunnabend SE, Daras I, Kusche J, Schrter J, Flechtner F, Dietrich R (2012) Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J Geodyn 59–60:64–71. doi:10.1016/j.jog.2011.02.003 Mass Transport and Mass Distribution in the System Earth

    Article  Google Scholar 

  32. Rodriguez-Solano C, Hugentobler U, Steigenberger P, Lutz S (2012) Impact of Earth radiation pressure on GPS position estimates. J Geod 86(5):309–317. doi:10.1007/s00190-011-0517-4

    Article  Google Scholar 

  33. Rodriguez-Solano C, Hugentobler U, Steigenberger P, Bloßfeld M, Fritsche M (2014) Reducing the draconitic errors in GNSS geodetic products pp 1–16. doi:10.1007/s00190-014-0704-1

  34. Rothacher M (2003) Towards a Rigorous Combination of Space Geodetic Techniques. In: Richter B, Schwegmann W, Dick WR (eds) Proceedings of the IERS Workshop on Combination Research and Global Geophysical Fluids, 18–21 November 2002. Bavarian Academy of Science, Munich, Germany,IERS Technical Note

  35. Rülke A, Dietrich R, Fritsche M, Rothacher M, Steigenberger P (2008) Realization of the Terrestrial Reference System by a reprocessed global GPS network. J Geophys Res 113(B08):403. doi:10.1029/2007JB005231

    Google Scholar 

  36. Rummel R, Beutler G, Dehant V, Gross R, Ilk K, Plag HP, Poli P, Rothacher M, Stein S, Thomas R, Woodworth P, Zerbini S, Zlotnicki V (2009) Global Geodetic Observing System, Springer, Berlin Heidelberg, chap Understanding a dynamic planet: Earth science requirements for geodesy, pp 89–133. doi:10.1007/978-3-642-02687-4_3

  37. Scherneck HG, Johansson J, Webb F (2000) Ocean loading tides in GPS an rapid variations of the frame origin. In: Schwarz (ed) Geodesy Beyond 2000—The Challanges of the First Decade, Springer, IAG Symposia, vol 121, pp 32–40

  38. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  39. Seitz M (2009) Kombination geodätischer Raumbeobachtungsverfahren zur Realisierung eines terrestrischen Referenzsystems. No. 630 in DGK Reihe C, Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften

  40. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123. doi:10.1007/s00190-012-0567-2

    Article  Google Scholar 

  41. Sillard P, Boucher C (2001) A review of algebraic constraints in terrestrial reference frame datum definition. J Geod 75(2–3):63–73. doi:10.1007/s001900100166

    Article  Google Scholar 

  42. Sośnica K, Thaller D, Dach R, Jäggi A, Beutler G (2013) Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results. J Geod pp 1–19. doi:10.1007/s00190-013-0644-1

  43. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111(B05):402. doi:10.1029/2005JB003747

    Google Scholar 

  44. Stocker T, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  45. Tapley B, Bettadpur S, Ries J, Thompson P, Watkins M (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505. doi:10.1126/science.1099192

    Article  Google Scholar 

  46. Thaller D (2008) Inter-technique combination based on homogeneous normal equation systems including station coordinates. Deutsches GeoForschungsZentrum, Earth orientation and troposphere parameters. ScientificTechnicalReportSTR 08/15. doi:10.2312/GFZ.b103-08153

  47. Thaller D, Krügel M, Rothacher M, Tesmer V, Schmid R, Angermann D (2007) Combined Earth orientation parameters based on homogeneous and continuous VLBI and GPS data. J Geod 81(6–8):529–541. doi:10.1007/s00190-006-0115-z

    Article  Google Scholar 

  48. Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geod 85(5):257–272. doi:10.1007/s00190-010-0433-z

    Article  Google Scholar 

  49. Thaller D, Roggenbuck O, Sośnica K, Mareyen M, Dach R, Jäggi A (2013) Validation of GNSS-SLR local ties by using space ties. IERS Workshop on Local Surveys and Co-locations, Paris, France

  50. Thaller D, Sośnica K, Dach R, Jggi A, Beutler G, Mareyen M, Richter B (2014) Geocenter Coordinates from GNSS and Combined GNSS-SLR Solutions Using Satellite Co-locations. In: Rizos C, Willis P (eds) Earth on the Edge: Science for a Sustainable Planet, International Association of Geodesy Symposia, vol 139, Springer, Berlin Heidelberg, pp 129–134, doi:10.1007/978-3-642-37222-3_16

  51. van Dam T, Wahr J, Milly P, Shmakin A, Blewitt G, Lavallée D, Larson K (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28(4):651–654. doi:10.1029/2000GL012120

    Article  Google Scholar 

  52. van Dam T, Wahr J (1987) Displacements of the earth’s surface due to atmospheric loading: effect on gravity and baseline measurements. J Geophys Res 92:1281–1286. doi:10.1029/JB092iB02p01281

    Article  Google Scholar 

  53. Williams S (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76:483–494. doi:10.1007/s00190-002-0283-4

    Article  Google Scholar 

  54. Williams S, Bock Y, Fang P, Jamason P, Nikolaidis R, Prawirodirdjo L, Miller M, Johnson D (2004) Error analysis of continuous GPS position time series. J Geophys Res 109(B03):412. doi:10.1029/2003JB002741

    Google Scholar 

  55. Wu X, Heflin M, Ivins E, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111(B09):401. doi:10.1029/2005JB004100

  56. Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities. J Geophys Res 102(B8):18035–18055, doi:10.1029/97JB01380

Download references

Acknowledgments

Since the work is based on data of the common effort of Technische Universität München, University of Bern, ETH Zurich and Technische Universität Dresden, we would like to thank all project partners within the project “Geodätische und geodynamische Nutzung reprozessierter GPS-, GLONASS- und SLR-Daten” and for the financial support the Deutsche Forschungsgemeinschaft and the Swiss National Science Foundation. The authors would also like to thank Geoffrey Blewitt and two anonymous reviewers for their comments which helped to improve the manuscript considerably.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Susanne Glaser.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Glaser, S., Fritsche, M., Sośnica, K. et al. A consistent combination of GNSS and SLR with minimum constraints. J Geod 89, 1165–1180 (2015). https://doi.org/10.1007/s00190-015-0842-0

Download citation

Keywords

  • Terrestrial reference frame
  • Inter-technique combination
  • Local ties
  • GNSS
  • SLR