Skip to main content

Advertisement

Log in

Reducing leakage error in GRACE-observed long-term ice mass change: a case study in West Antarctica

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Spatial leakage is a major limitation for quantitative interpretation of satellite gravity measurements from the gravity recovery and climate experiment (GRACE). Using synthetic data to simulate ice mass changes in the Amundsen Sea Embayment and Antarctic Peninsula, we analyze quantitatively the effects of a limited range of spherical harmonics (SH) coefficients and additional filtering, which in combination can significantly attenuate signal amplitudes. We present details of a forward modeling algorithm and show that it is capable of removing these biases from GRACE estimates. Examples show how to implement the method by constraining locations of presumed mass changes, or leaving these locations unspecified within a continental region. Our analysis indicates that leakage effects from far-field mass signals (e.g., terrestrial water storage change and glacial melting over other continents) on Antarctic mass rate estimates appear to be negligible. However, leakage from long-term ocean bottom pressure change in the surrounding Antarctic Circumpolar Current regions may bias Antarctic mass rate estimates by up to 20 Gigatonne per year (Gt/year). Experiments based on proxy GRACE measurement noise indicate that the effects of GRACE spatial noise on estimated Antarctic mass rates via constrained and unconstrained forward modelings are \(\sim \)5 and 15 Gt/year, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bonin J, Chambers DP (2013) Uncertainty estimates of a GRACE inversion modeling technique over Greenland using a simulation, Geophys J Int, pp 1–18. doi:10.1093/gji/ggt091

  • Cazenave A, Chen JL (2010) Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth Planet Sci Lett 298:263–274. doi:10.1016/j.epsl.2010.07.035

    Article  Google Scholar 

  • Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31:L13310. doi:10.1029/2004GL020461

    Article  Google Scholar 

  • Chambers DP, Tamisiea ME, Nerem RS, Ries JC (2007) Effects of ice melting on GRACE observations of ocean mass trends. Geophys Res Lett 34:L05610. doi:10.1029/2006GL029171

    Article  Google Scholar 

  • Chambers DP (2009) Calculating trends from GRACE in the presence of large changes in continental ice storage and ocean mass. Geophys J Int 176:415–419. doi:10.1111/j.1365-246X.2008.04012.x

    Article  Google Scholar 

  • Chao BF (2005) On inversion for mass distribution from global (time-variable) gravity field. J Geodynam 39:223–230. doi:10.1016/j.jog.2004.11.001

    Article  Google Scholar 

  • Chao BF, Gross RS (1987) Changes in the Earth’s rotation and low-degree gravitational field induced by earthquakes. Geophys J Inter 91(3):569–596. doi:10.1111/j.1365-246X.1987.tb01659.x

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of greenland ice sheet. Science 313(5795):1958–1960. doi:10.1126/science.1129007

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Blankenship DD, Ivins E (2007) Patagonia Icefield melting observed by GRACE. Geophys Res Lett 34(22):L22501. doi:10.1029/2007GL031871

    Article  Google Scholar 

  • Chen JL, Wilson CR, Blankenship DD, Tapley BD (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat Geosci 2:859–862. doi:10.1038/NGEO694

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD (2013) Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nat Geosci 6:549–552. doi:10.1038/NGEO1829

    Article  Google Scholar 

  • Cheng MK, Ries JC (2012) Monthly estimates of C20 from 5 SLR satellites based on GRACE RL05 models, GRACE technical note 07, The GRACE Project, Center for Space Research, University of Texas at Austin. [ftp://podaac.jpl.nasa.gov/allData/grace/docs/TN-07_C20_SLR.txt]

  • Güntner A, Stuck J, Werth S, Döll P, Verzano K, Merz B (2007) A global analysis of temporal and spatial variations in continental water storage. Water Resour Res 43:W05416. doi:10.1029/2006WR005247

    Google Scholar 

  • Guo JY, Duan XJ, Shum CK (2010) Non-isotropic Gaussian smoothing and leakage reduction for determining mass changes over land and ocean using GRACE data. Geophys J Int 181:290–302. doi:10.1111/j.1365-246X.2010.04534.x

    Article  Google Scholar 

  • Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Department of Geodetic Science and Surveying, Ohio State University, Columbus, OH

    Google Scholar 

  • Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48:W04531. doi:10.1029/2011WR011453

    Google Scholar 

  • Lenaerts JTM, Angelen JH, Broeke MR, Gardner AS, Wouters B, Meijgaard E (2013) Irreversible mass loss of Canadian Arctic Archipelago glaciers. Geophys Res Lett 40:870–874. doi:10.1002/grl.50214

    Article  Google Scholar 

  • Peltier WR (2004) Global glacial Isostasy and the surface of the Ice-Age Earth: the ICE-5G (VM2) model and GRACE. Ann Rev Earth Planet Sci 32:111–149. doi:10.1146/annurev.earth.32.082503.144359

    Article  Google Scholar 

  • Ramillien G, Lombard A, Cazenave A, Ivins ER, Llubes M, Remy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Global Planet Change 53(3):198–208. doi:10.1016/j.gloplacha.2006.06.003

    Article  Google Scholar 

  • Rietbroek R, Brunnabend SE, Kusche J, Schröter J (2012) Resolving sea level contributions by identifying fingerprints in time-variable gravity and altimetry. J Geodyn 59–60:72–81

    Article  Google Scholar 

  • Rignot E et al (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nat Geosci 1:106–110. doi:10.1038/ngeo102

    Article  Google Scholar 

  • Rignot E, Velicogna I, van den Broeke MR, Monagha A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:L05503. doi:10.1029/2011GL046583

  • Schrama EJO, Wouters B (2011) Revisiting Greenland ice sheet mass loss observed by GRACE. J Geophys Res (Solid Earth) 116(B15):B02407. doi:10.1029/2009JB006847

    Google Scholar 

  • Shepherd A, Wingham D (2007) Recent sea-level contributions of the Antarctic and Greenland Ice Sheets. Science 315:1529–1532

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285

  • Tapley BD, Bettadpur S, Watkins MM, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Thomas M (2002) Ocean induced variations of Earth’s rotation—results from a simultaneous model of global circulation and tides, PhD dissertation, University of Hamburg, Germany, p 129

  • Velicogna I, Wahr J (2006) Acceleration of Greenland ice mass loss in spring 2004. Nature 443:329–331. doi:10.1038/nature05168

    Article  Google Scholar 

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE, Geophys Res Lett, 36: L19503, p 4. doi:10.1029/2009GL040222

  • Velicogna I, Wahr J (2013) Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys Res Lett 40:3055–3063. doi:10.1002/grl.50527

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30230. doi:10.1029/98JB02844

    Article  Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31:L11501. doi:10.1029/2004GL019779

    Article  Google Scholar 

  • Wouters B, Chambers D, Schrama EJO (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35:L20501. doi:10.1029/2008GL034816

    Article  Google Scholar 

  • Wu X, Heflin MB, Schotman H, Vermeersen BLA, Dong D, Gross RS, Ivins ER, Moore AW, Owen SE (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat Geosci 3:642–646. doi:10.1038/ngeo938

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to two anonymous reviewers and the Associated Editor (Pavel Ditmar) for their insightful comments, which have led to improved presentation of the results. The authors would like to thank Andreas Güntner of the Helmholtz Centre Potsdam for providing the WGHM model data. This research was supported by NSF OPP (ANT-1043750), NASA GRACE & ESI (NNX12AJ97G, NNX12AM86G), CNSF (Grants: 41228004, 41204017, 41274025), and National Key Basic Research Program of China (973 Program) (2012CB957703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J.L., Wilson, C.R., Li, J. et al. Reducing leakage error in GRACE-observed long-term ice mass change: a case study in West Antarctica. J Geod 89, 925–940 (2015). https://doi.org/10.1007/s00190-015-0824-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0824-2

Keywords

Navigation