Skip to main content

CODE’s new solar radiation pressure model for GNSS orbit determination

Abstract

The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009–2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft’s solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which substantially reduces the spurious signals in the geocenter coordinate \(z\) (by about a factor of 2–6), reduces the orbit misclosures at the day boundaries by about 10 %, slightly improves the consistency of the estimated ERPs with those of the IERS 08 C04 Earth rotation series, and substantially reduces the systematics in the SLR validation of the GNSS orbits.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. ftp://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf.

References

  • Bar-Sever Y (1996) A new model for GPS yaw attitude. J Geod 70:714–723. doi:10.1007/BF00867149

    Article  Google Scholar 

  • Bar-Sever Y, Kuang D (2004) New empirically derived solar radiation pressure model for global positioning system satellites. IPN Progress Report 42–159, Nov 15, 2004

  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the International GPS Service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–384

    Google Scholar 

  • Bizouard C, Gambis D (2009) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2005. Int Assoc Geod Symp 134. doi:10.1007/978-3-642-00860-3_41

  • Dach R, Hugentobler U, Meindl M, and Fridez P (eds) (2007) The Bernese GPS Software Version 5.0, Astronomical Institute, University of Bern

  • Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–366

    Article  Google Scholar 

  • Dach R, Schaer S, Lutz S, Bock H, Orliac E, Prange L, Thaller D, Mervart L, Jäggi A, Beutler G, Brockmann E, Ineichen D, Wiget A, Weber G, Habrich H, Ihde J, Steigenberger P, Hugentobler U (2012) Annual Center Reports: Center for Orbit Determination in Europe (CODE). pp. 29–40. In: Meindl M, Dach R, Jean Y, Astronomical Institute, University of Bern (eds) International GNSS Service, Technical Report 2011, printed by IGS Central Bureau, Pasadena, California (USA)

  • Dach R, Schaer S, Lutz S, Baumann C, Bock H, Orliac E, Prange L, Thaller D, Mervart L, Jäggi A, Beutler G, Brockmann E, Ineichen D, Wiget A, Weber G, Habrich H, Söhne W, Ihde J, Steigenberger P, Hugentobler U (2014) Annual Center Reports: Center for Orbit Determination in Europe (CODE). pp. 21–34. In: Dach R, Jean Y, Astronomical Institute, University of Bern (eds) International GNSS Service, Technical Report 2013, printed by IGS Central Bureau, Pasadena, California (USA)

  • Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Fliegel HF, Gallini TE, Swift ER (1992) Global positioning system radiation force model for geodetic applications. JGR 97(B1):559–568

    Article  Google Scholar 

  • Fliegel HF, Gallini TE (1996) Solar force modeling of block IIR global positioning system satellites. J Spacecr Rockets 33(6):863

    Article  Google Scholar 

  • Fritsche M, Sośnica K, Rodríguez-Solano CJ, Steigenberger P, Dietrich R, Dach R, Wang K, Hugentobler U, Rothacher M (2014) Homogeneous reprocessing of GPS, GLONASS and SLR observations. J Geod 88(7):625–642. doi:10.1007/s00190-014-0710-3

  • Griffith J, Ray JR (2012) Sub-daily alias and draconitic errors in the IGS orbits. GPS Solut. doi:10.1007/s10291-012-0289-1

  • Hefty J, Rothacher M, Springer TA, Weber R, Beutler G (2000) Analysis of the first year of Earth rotation parameters with a sub-daily time resolution gained at the CODE processing center of the IGS. J Geod 74:479–487

    Article  Google Scholar 

  • Meindl M (2011) Combined analysis of observations from different global navigation satellite systems. Geodätisch-geophysikalische Arbeiten in der Schweiz, vol 83, Eidg. Technische Hochschule Zürich, Switzerland

  • Meindl M, Beutler G, Thaller D, Jäggi A, Dach R (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. doi:10.1016/j.asr.2012.10.026

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P, Hugentobler U (2014) Enhanced solar radiation pressure modeling for Galileo satellites. J Geod. doi:10.1007/s00190-014-0774-0

    Google Scholar 

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12:55–64. doi:10.1007/s10291-007-0067-7

    Article  Google Scholar 

  • Ray J, Griffiths J, Collilieux X, Rebischung P (2013) Subseasonal GNSS positioning errors. Geophys Res Lett (GRL). doi:10.1002/2013GL058160

  • Rodríguez-Solano CJ, Hugentobler U, Steigenberger P, Lutz S (2011) Impact of Earth radiation pressure on GPS position estimates. J Geod. doi:10.1007/s00190-011-0517-4

  • Rodríguez-Solano CJ (2014) Impact of non-conservative force modeling on GNSS satellite orbits and global solutions. Ph. D. thesis, Technical University of Munich

  • Rodríguez-Solano CJ, Hugentobler U, Steigenberger P, Blossfeld M, Fritsche M (2014b) Reducing the draconitic errors in GNSS geodetic products. J Geod 88:559–574. doi:10.1007/s00190-014-0704-1

    Article  Google Scholar 

  • Sośnica K, Jäggi A, Thaller D, Dach R, Beutler G (2014) Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geod 88(8):789–804. doi:10.1007/s00190-014-0722-z

    Article  Google Scholar 

  • Sośnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015) Satellite laser ranging to GPS and GLONASS. J Geod. doi:10.1007/s00190-015-0810-8

  • Springer TA, Beutler G, Rothacher M (1999a) A new solar radiation pressure model for GPS satellites. GPS Solut 3(2):50–62

    Article  Google Scholar 

  • Springer TA (1999b) Modeling and validating orbits and clocks using the global positioning system. Geodätisch-geophysikalische Arbeiten in der Schweiz, vol 60, Eidg. Technische Hochschule Zürich, Switzerland. ISBN-978-3-908440-02-4

  • Springer TA, Flohrer C, Otten M, Enderle W (2014) ESA reprocessing: advances in GNSS analysis. IGS workshop 2014, California, USA

  • Ziebart M, Cross P, Adhya S (2002) Modeling photon pressure: the key to high-precision GPS satellite orbits. GPS World 13(1):43–50

    Google Scholar 

  • Ziebart M (2004) Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape. J Spacecr Rockets 41(5):840–848. doi:10.2514/1.13097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Arnold.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arnold, D., Meindl, M., Beutler, G. et al. CODE’s new solar radiation pressure model for GNSS orbit determination. J Geod 89, 775–791 (2015). https://doi.org/10.1007/s00190-015-0814-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0814-4

Keywords

  • GPS
  • GLONASS
  • Solar radiation pressure
  • ECOM