Skip to main content

The impact of common versus separate estimation of orbit parameters on GRACE gravity field solutions


Gravity field parameters are usually determined from observations of the GRACE satellite mission together with arc-specific parameters in a generalized orbit determination process. When separating the estimation of gravity field parameters from the determination of the satellites’ orbits, correlations between orbit parameters and gravity field coefficients are ignored and the latter parameters are biased towards the a priori force model. We are thus confronted with a kind of hidden regularization. To decipher the underlying mechanisms, the Celestial Mechanics Approach is complemented by tools to modify the impact of the pseudo-stochastic arc-specific parameters on the normal equations level and to efficiently generate ensembles of solutions. By introducing a time variable a priori model and solving for hourly pseudo-stochastic accelerations, a significant reduction of noisy striping in the monthly solutions can be achieved. Setting up more frequent pseudo-stochastic parameters results in a further reduction of the noise, but also in a notable damping of the observed geophysical signals. To quantify the effect of the a priori model on the monthly solutions, the process of fixing the orbit parameters is replaced by an equivalent introduction of special pseudo-observations, i.e., by explicit regularization. The contribution of the thereby introduced a priori information is determined by a contribution analysis. The presented mechanism is valid universally. It may be used to separate any subset of parameters by pseudo-observations of a special design and to quantify the damage imposed on the solution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Release notes for GFZ GRACE level-2 products—version RL04.

  2. 2.

  3. 3.

  4. 4.

  5. 5.

    Release notes for GFZ GRACE level-2 products—version RL05.


  1. Bettadpur S (2012) CSR level-2 processing standards document for level-2 product release 0005. GRACE 327–742

  2. Beutler G, Jäggi A, Mervart L, Meyer U (2010a) The celestial mechanics approach: theoretical foundations. J Geod 84:605–624. doi:10.1007/s00190-010-0401-7

    Article  Google Scholar 

  3. Beutler G, Jäggi A, Mervart L, Meyer U (2010b) The celestial mechanics approach: application to data of the GRACE mission. J Geod 84:661–681. doi:10.1007/s00190-010-0402-6

    Article  Google Scholar 

  4. Bruinsma S, Lemoine JM, Biancale R, Valès N (2010) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45:587–601. doi:10.1016/j.asr.2009.10.012

    Article  Google Scholar 

  5. Chambers DP, Bonin JA (2012) Evaluation of release 05 time-variable gravity coefficients over the ocean. Ocean Sci 8:859–868. doi:10.5194/os-8-859-2012

    Article  Google Scholar 

  6. Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer KH (2012) GFZ GRACE level-2 processing standards document for level-2 product release 0005. In: Scientific technical report STR12/02—data, revised edition, January 2013, Potsdam. doi:10.2312/GFZ.b103-1202-25

  7. Davis JL, Tamisiea ME, Elósegui P, Mitrovica JX, Hill EM (2008) A statistical filtering approach for gravity recovery and climate experiment (GRACE) gravity data. J Geophys Res 113:B04410. doi:10.1029/2007JB005043

    Google Scholar 

  8. Dunn CE, Bertiger W, Bar-Sever Y, Desai S, Haines B, Kuang D, Franklin G, Harris I, Kruizinga G, Meehan T, Nandi S, Nguyen D, Rogstad T, Thomas JB, Tien J, Romans L, Watkins M, Wu SC, Bettadpur S, Kim J (2003) Instrument of GRACE: GPS augments gravity measurements. GPS World 14(2):16–28

    Google Scholar 

  9. Flechtner F, Dobslaw H (2013) AOD1B product description document for product release 05. GRACE 327–750, version 4.0

  10. Gooding RH, King-Hele DG (1989) Explicit forms of some functions arising in the analysis of resonant satellite orbits. Proc R Soc Lond 422A:241–259

  11. Han SC, Shum CK, Jekeli C, Kuo CY, Wilson C, Seo KW (2005) Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys J Int 163:18–25. doi:10.1111/j.1365-246X.2005.02756.x

    Article  Google Scholar 

  12. Jäggi A, Hubentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low-earth orbiters. J Geod 80:47–60. doi:10.1007/s00190-006-0029-9

    Article  Google Scholar 

  13. Jäggi A, Beutler G, Mervart L (2010) GRACE gravity field determination using the celestial mechanics approach—first results. In: Mertikas SP (ed) Gravity, geoid and earth observation, international association of geodesy symposia, vol 135. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-10634-7_24

  14. Jäggi A, Beutler G, Meyer U, Prange L, Dach R, Mervart L (2011a) AIUB-GRACE02S: Status of GRACE gravity field recovery using the celestial mechanics approach. In: Kenyon et al (eds) Geodesy for planet earth, international association of geodesy symposia, vol 136. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-20338-1_20

  15. Jäggi A, Prange L, Hugentobler U (2011b) Impact of covariance information of kinematic positions on orbit reconstruction and gravity field recovery. Adv Space Res 47:1472–1479. doi:10.1016/j.asr.2010.12.009

    Article  Google Scholar 

  16. Klees R, Revtova EA, Gunter BC, Ditmar P, Oudman E, Winsemius HC, Savenije HHG (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys J Int 175:417–432. doi:10.1111/j.1365-246X.2008.03922.x

    Article  Google Scholar 

  17. Kurtenbach E, Mayer-Gürr T, Eicker A (2009) Deriving daily snapshots of the earth’s gravity field from GRACE L1B data using Kalman filtering. Geophys Res Lett 36:17102. doi:10.1029/2009GL039564

    Article  Google Scholar 

  18. Koch KR, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76:259–268. doi:10.1007/s00190-002-0245-x

    Article  Google Scholar 

  19. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81:733–749. doi:10.1007/s00190-007-0143-3

    Article  Google Scholar 

  20. Liu X, Ditmar P, Siemes C, Slobbe DC, Revtova E, Klees R, Zhao Q (2010) DEOS mass transport model (DMT-1) based on GRACE satellite data: methodology and validation. Geophys J Int 181:769–788. doi:10.1111/j.1365-246X.2010.04533.x

    Article  Google Scholar 

  21. Meyer U, Frommknecht B, Flechtner F (2010) Global gravity fields from simulated level-1 GRACE data. In: Flechtner F et al (eds) System earth via geodetic-geophysical space techniques, advanced technologies in earth sciences. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-10228-8_12

  22. Meyer U, Jäggi A, Beutler G (2012) Monthly gravity field solutions based on GRACE observations generated with the celestial mechanics approach. Earth Planet Sci Lett 345:72–80. doi:10.1016/j.epsl.2012.06.026

    Article  Google Scholar 

  23. Meyer U, Dahle C, Sneeuw N, Jäggi A, Beutler G, Bock H (2015) The effect of pseudo-stochastic orbit parameters on GRACE monthly gravity fields—insights from lumped coefficients. In: IAG symposia proceedings Hotine-Marussi VIII in Rome, June 7–21, 2013. Springer, Berlin, Heidelberg (in print)

  24. Savcenko R, Bosch W (2011) EOT11a—a new tide model from multi-mission altimetry. OSTST Meeting, San Diego, pp 19–21

  25. Seo KW, Wilson CR, Chen J, Waliser DE (2008) GRACE’s spatial aliasing error. Geophys J Int 172:41–48. doi:10.1111/j.1365-246X.2007.03611.x

    Article  Google Scholar 

  26. Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. Deutsche Geodätische Kommission, Reihe C, vol 527

  27. Sośnica KJ (2014) Determination of precise satellite orbits and geodetic parameters using satellite laser ranging. Dissertation, University of Berne

  28. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285

    Google Scholar 

  29. Tapley BD (1973) Statistical orbit determination theory. In: Tapley BD, Szebehely V (eds) Recent advances in dynamical astronomy. Reidel, Boston, pp 396–425

    Chapter  Google Scholar 

  30. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins M (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505

    Article  Google Scholar 

  31. Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Wiley, New York

  32. Wahr J, Molenaar M, Bryan F (1998) Time variability of the earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30230. doi:10.1029/98JB02844

  33. Watkins M, Yuan DN (2012) JPL level-2 processing standards document, for level-2 product release 05. GRACE 327–744, revision 5.0

  34. Weigelt M, Sneeuw N, Schrama EJO, Visser PNAM (2013) An improved sampling rule for mapping geopotential functions of a planet from a near polar orbit. J Geod 87:127–142. doi:10.1007/s00190-012-0585-0

    Article  Google Scholar 

  35. Zhao Q, Guo J, Hu Z, Shi C, Liu J, Cai H, Liu X (2010) GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients. AdvSpace Res 47:1833–1850. doi:10.1016/j.asr.2010.11.041

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to U. Meyer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meyer, U., Jäggi, A., Beutler, G. et al. The impact of common versus separate estimation of orbit parameters on GRACE gravity field solutions. J Geod 89, 685–696 (2015).

Download citation


  • Gravity determination
  • Parameter fixing
  • Regularization
  • Contribution analysis