Skip to main content

Advertisement

Log in

GPS radio occultation constellation design with the optimal performance in Asia Pacific region

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The growing desire for better spatial and also temporal distribution of radio occultation data is a motivation for extensive researches considering either number of GNSS/receiver satellites or better optimization tools resulting in better distributions. This paper addresses the problem of designing a global positioning system-only radio occultation mission with the optimal performance in Asia Pacific region. Constellation Patterns are discussed and 2D-lattice and 3D-lattice flower constellations are adopted to develop a system with circular and elliptical orbits, respectively. A perturbed orbit propagation model leading to significantly more accurate pre-analysis is used. Emphasizing on the spatial and also temporal distribution of radio occultation events for the first time, distribution norm is provided as a volumetric distribution measure using Voronoi diagram concept in a 3D space consisting temporal and spatial intervals. Optimizations are performed using genetic algorithm to determine optimal constellation design parameters by the suitable fitness function and constraints devised. The resulted constellation has been evaluated by a regional comparison to the globally distributed FORMOSAT-3/COSMIC in terms of the distribution norm, number of radio occultation events and also coverage as an additional point-to-point distribution measure. Although it is demonstrated that the optimal 3D-lattice enjoys better performance than FORMOSAT-3, the design approach results in a 2D-lattice flower constellation which is superior to other constellations in regional emphasis of radio occultation events. Its global performance is discussed and it is demonstrated that using multi-GNSS receiver to increase satellites may not guarantee a good distribution of radio occultation data in some aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdelkhalik O, Gad A (2011) Optimization of space orbits design for Earth orbiting missions. Acta Astronautica 68:1307–1317. doi:10.1016/j.actaastro.2010.09.029

  • Anthes R (2011) Exploring Earth’s atmosphere with radio occultation: contributions to weather, climate and space weather. Atmos Meas Tech 4:1077–1103

    Article  Google Scholar 

  • Asvial M, Tafazolli R, Evans BG (2004) Satellite constellation design and radio resource management using genetic algorithm. Communications, IEEE proceedings, pp 151:204–209. doi:10.1049/ip-com:20040291(410)151

  • Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput Sur (CSUR) 23:345–405

    Article  Google Scholar 

  • Avendaño ME, Davis JJ, Mortari D (2013) The 2-D lattice theory of fower constellations. Celest. Mech. Dyn. Astron. 116:325–337

    Article  Google Scholar 

  • Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386

    Article  Google Scholar 

  • Brunini C, Azpilicueta F, Nava B (2013) A technique for routinely updating the ITU-R database using radio occultation electron density profiles. J Geod 87:813–823

    Article  Google Scholar 

  • Coesa U (1976) Standard atmosphere, 1976. US Government Printing Office, Washington, DC

    Google Scholar 

  • Cook G (1965) Satellite drag coefficients. Planet Space Sci 13:929–946

    Article  Google Scholar 

  • Cook K, Fong C-J, Wenkel MJ, Wilczynski P, Yen N, Chang G (2013) FORMOSAT-7/COSMIC-2 GNSS radio occultation constellation mission for global weather monitoring. In: Aerospace conference, 2013 IEEE. IEEE, pp. 1–8

  • Crossley WA, Williams EA (2000) Simulated annealing and genetic algorithm approaches for discontinuous coverage satellite constellation design. Eng Optim 32:353–371. doi:10.1080/03052150008941304

    Article  Google Scholar 

  • Davis JJ, Avendaño ME, Mortari D (2013) The 3-D lattice theory of flower constellations. Celest Mech Dyn Astron 116:339–356

    Article  Google Scholar 

  • Douglas M (2010) Adaptive sounding arrays for tropical regions. In: Extended abstracts, 29th conference on Hurricanes and Tropical Meteorology. Am Meteor Soc Tucson, AZ, pp 12B. 17

  • Ely T, Crossley W, Williams E (1999) Satellite constellation design for zonal coverage using genetic algorithms. J Astronaut Sci 47:207–228

    Google Scholar 

  • Flores F, Rondanelli R, Díaz M, Querel R, Mundnich K, Herrera LA, Pola D, Carricajo T (2013) The life cycle of a radiosonde. Bull Am Meteorol Soc 94:187–198

    Article  Google Scholar 

  • Fong C-J, Shiau W-T, Lin C-T, Kuo T-C, Chu C-H, Yang S-K, Yen NL, Chen S-S, Kuo Y-H, Liou Y-A (2008) Constellation deployment for the FORMOSAT-3/COSMIC mission. IEEE Trans Geosci Remote Sens 46:3367–3379

    Article  Google Scholar 

  • Fong C-J, Yen NL, Chu C-H, Yang S-K, Shiau W-T, Huang C-Y, Chi S, Chen S-S, Liou Y-A, Kuo Y-H (2009) FORMOSAT-3/COSMIC spacecraft constellation system, mission results, and prospect for follow-on mission. Terrestrial, Atmospheric and Oceanic Sciences 20

    Google Scholar 

  • Fonseca CM, Fleming PJ (1993) Genetic algorithms for multiobjective optimization: formulation discussion and generalization. In: ICGA, pp 416–423

  • Goldberg D, Holland J (1988) Genetic algorithms and machine learning. Mach Learn 3:95–99. doi:10.1023/A:1022602019183

    Article  Google Scholar 

  • Gunzburger M, Burkardt J (2004) Uniformity measures for point sample in hypercubes. Rapp. tech. Florida State University (cf. p 73)

  • Hogan P, Gaskins T (2009) Spatial information processing: standards-based open source visualization technology. In: AGU fall meeting abstracts, p 04

  • James RW, Wiley JL (1999) Space mission analysis and design. MicrocosmPress, Torrance

    Google Scholar 

  • Juang J-C, Tsai Y-F, Chu C-H (2013) On constellation design of multi-GNSS radio occultation mission. Acta Astronaut 82:88–94

    Article  Google Scholar 

  • Kessler DJ (1990) Collision probability at low altitudes resulting from elliptical orbits. Adv Space Res 10:393–396

    Article  Google Scholar 

  • Kliore A, Cain DL, Levy GS, Eshleman VR, Fjeldbo G, Drake FD (1965) Occultation experiment: results of the first direct measurement of Mars’s atmosphere and ionosphere. Science 149:1243–1248

    Article  Google Scholar 

  • Le Marshall J, Xiao Y, Norman R, Zhang K, Rea A, Cucurull L, Seecamp R, Steinle P, Puri K, Fu E (2012) The application of radio occultation observations for climate monitoring and numerical weather prediction in the Australian region. Aust Meteorol Oceanogr J 62:323–334

    Google Scholar 

  • Lee S, Mortari D (2013) 2-D Lattice flower constellations for radio occultation missions. Front Aerosp Eng 2:79–90

    Google Scholar 

  • Mortari D, Wilkins MP (2008) Flower constellation set theory. Part I: compatibility and phasing. IEEE Trans Aerosp Electron Syst 44:953–962

    Article  Google Scholar 

  • Mortari D, Wilkins MP, Bruccolerr C (2003) The flower constellations. Adv Astronaut Sci 115:269–290

    Google Scholar 

  • Mousa A, Aoyama Y, Tsuda T (2006) A simulation analysis to optimize orbits for a tropical GPS radio occultation mission. Earth Planets Space 58:919–925

    Article  Google Scholar 

  • Poli R, Langdon WB (1998) Schema theory for genetic programming with one-point crossover and point mutation. Evolut Comput 6:231–252

    Article  Google Scholar 

  • Rider L (1985) Optimized polar orbit constellations for redundant earth coverage. J Astronaut Sci 33:147–161

    Google Scholar 

  • Rider L (1986) Analytic design of satellite constellations for zonal earth coverage using inclined circular orbits. J Astronaut Sci 34:31–64

    Google Scholar 

  • Seeber G (2003) Satellite geodesy: foundations, methods, and applications. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Speckman L, Lang T, Boyce W (1990) An analysis of the line of sight vector between two satellites in common altitude circular orbits. In: Astrodynamics conference. American Institute of Aeronautics and Astronautics

  • Walker J (1978) Satellite patterns for continuous multiple whole-Earth coverage. In: Maritime and aeronautical satellite communication and navigation, pp 119–122

  • Walker JG (1977) Continuous whole-earth coverage by circular-orbit satellite patterns. In: DTIC Document, United Kingdom

  • Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng C-Z, Healy SB, Heise S, Huang C-Y, Jakowski N, Kohler W (2009) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terr Atmos Ocean Sci 20:35

  • Wilkins MP, Mortari D (2008) Flower constellation set theory part II: secondary paths and equivalency. IEEE Trans Aerosp Electron Syst 44:964–976

    Article  Google Scholar 

  • Wu B-H, Chu V, Chen P, Ting T (2005) FORMOSAT-3/COSMIC science mission update. GPS Solut 9:111–121

    Article  Google Scholar 

  • Xu G (2008) Orbits. Springer, Heidelberg

    Google Scholar 

  • Yan K, Yang F, Pan C, Song J, Ren F, Li J (2013) Genetic algorithm aided gray-APSK constellation optimization. In: Wireless communications and mobile computing conference (IWCMC), 2013 9th international. IEEE, pp 1705–1709

  • Yunck TP, Chao-Han L, Ware R (2000) A history of GPS sounding. Terr Atmosp Ocean Sci 11:1–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Asgarimehr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgarimehr, M., Hossainali, M.M. GPS radio occultation constellation design with the optimal performance in Asia Pacific region. J Geod 89, 519–536 (2015). https://doi.org/10.1007/s00190-015-0795-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0795-3

Keywords

Navigation