Journal of Geodesy

, Volume 89, Issue 1, pp 17–32 | Cite as

Retrieving three-dimensional displacement fields of mining areas from a single InSAR pair

  • Zhi Wei Li
  • Ze Fa YangEmail author
  • Jian Jun Zhu
  • Jun Hu
  • Yun Jia Wang
  • Pei Xian Li
  • Guo Liang Chen
Original Article


This paper presents a novel method for retrieving three-dimensional (3-D) displacement fields of mining areas from a single interferometric synthetic aperture radar (InSAR) pair. This method fully exploits the mechanism of mining subsidence, specifically the proportional relationship between the horizontal displacement and horizontal gradient of vertical displacements caused by underground mining. This method overcomes the limitations of conventional InSAR techniques that can only measure one-dimensional (1-D) deformation of mining area along the radar line-of-sight direction. The proposed method is first validated with simulated 3-D displacement fields, which are obtained by the FLAC\(^{\mathrm{3D}}\) software. The root mean square errors of the 3-D displacements retrieved by the proposed method are 13.7, 27.6 and 3.6 mm for the West–East, North–South, and Up–Down components, respectively. We then apply the proposed method to estimate the 3-D displacements of the Qianyingzi and the Xuzhou coal mines in China, respectively, each along with two Advanced Land Observing Satellite (ALOS) Phased Array Type L-band Synthetic Aperture Radar images. Results show that the estimated 3-D displacement is highly consistent with that of the field surveying. This demonstrates that the proposed method is an effective approach for retrieving 3-D mining displacement fields and will play an important role in mining-related hazard prevention and environment assessment under limited InSAR acquisitions.


Mining subsidence Three-dimensional displacement fields Single InSAR pair Mechanism of mining subsidence 



The work was supported by the National Natural Science Foundation of China (Nos.: 41474008, 41222027 and 41474007), Hunan Provincial Natural Science Foundation of China (No. 13JJ1006), The National High Technology Research and Development Program of China (863 Program) (2012AA121301), Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection (E21224, E21418), Fundamental Research Funds for the Central Universities of Central South University (2014zzts051). The authors would like to thank the anonymous reviewers for the constructive comments and the Japan Aerospace Exploration Agency (JAXA) for providing the PALSAR images over study areas (Nos. 582 and 1390).


  1. Anhui University of Science and Technology (2011) Report of rock movement over 3212 working panel in Qianyingzi coal mine, pp 1–70Google Scholar
  2. Carnec C, Delacourt C (2000) Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France. J Appl Geophys 43(1):43–54. doi: 10.1016/S0926-9851(99)00032-4 CrossRefGoogle Scholar
  3. Chen CW, Zebker HA (2001) Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J Opt Soc Am A Opt Image Sci Vis 18:338–351. doi: 10.1364/JOSAA.18.000338 CrossRefGoogle Scholar
  4. Chen CW, Zebker HA (2002) Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Trans Geosci Remote Sens 40(8):1709–1719. doi: 10.1109/TGRS.2002.802453 CrossRefGoogle Scholar
  5. Dai HY, Wang JZ, Cai MF, Wu LX, Guo ZZ (2002) Seam dip angle based mining subsidence model and its application. Int J Rock Mech Min Sci 39(1):115–123. doi: 10.1016/S1365-1609(02)00008-4 CrossRefGoogle Scholar
  6. Dai HY, Wang JZ (2003) Prediction model for surface movement and deformation induced by subcritical extraction. J China Coal Soc 28(16):583–587Google Scholar
  7. Djamaluddinet I, Mitani Y, Ikemi Y (2012) GIS-based computational method for simulating the components of 3D dynamic ground subsidence during the process of undermining. Int J Geomech 1:43–53. doi: 10.1061/(ASCE)GM.1943-5622.0000105 CrossRefGoogle Scholar
  8. Donald S (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 ACM national conference, New York, USA, pp 517–524. doi: 10.1145/800186.810616
  9. Dong XB (2010) Research on stability of draft power plant building foundation with the goaf of Pangzhuang coal mine in Xuzhou city. Dissertation, Xi’an University of TechnologyGoogle Scholar
  10. Fialko Y, Sandwell D, Agnew D, Simons M, Shearer P, Minster B (2002) Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science 297(5588):1858–1862. doi: 10.1126/science.1074671 CrossRefGoogle Scholar
  11. Fialko Y, Sandwell D, Simons M, Rosen P (2005) Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature 435:295–299. doi: 10.1038/nature03425 CrossRefGoogle Scholar
  12. Ge LL, Chang HC, Rizos C et al (2007) Mine subsidence monitoring using multi-source satellite SAR images. Photogramm Eng Remote Sens 73(3):259–266. doi: 10.1029/JB094iB07p09183 CrossRefGoogle Scholar
  13. Gray L (2011) Using multiple RADARSAT InSAR pairs to estimate a full three-dimensional solution for glacial ice movement. Geophys Res Lett 38(5):L05502/1–L05502/6. doi: 10.1029/2010gl046484
  14. Gudmundsson S, Sigmundsson F, Carstensen JM (2002) Three-dimensional surface motion maps estimated from combined interferometric synthetic aperture radar and GPS data. J Geophys Res 107(B10):2250. doi: 10.1029/2001JB000283 CrossRefGoogle Scholar
  15. Gordon G, Mattevada S, O’Bryant S (2014) Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ Res 130:59–69. doi: 10.1016/j.envres.2013.12.005 CrossRefGoogle Scholar
  16. Guo ZZ, Xie HP, Wang JZ (2004) Applying probability distribution density function to predict the surface subsidence caused by subcritical extraction. J China Coal Soc 26(2):155–158Google Scholar
  17. Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Springer, BerlinCrossRefGoogle Scholar
  18. He GQ (1991) Mining Subsidence. Xuzhou, JiangsuGoogle Scholar
  19. Herrera G, Tomas R, Lopez-Sanchez JM, Delgado J, Mallorquiet JJ, Duque S, Mulas J (2007) Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Eng Geol 90(3–4):148–159. doi: 10.1016/j.enggeo.2007.01.001 CrossRefGoogle Scholar
  20. Hu J, Li ZW, Zhu JJ, Ren XC, Ding XL (2010) Inferring three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits. Sci China Earth Sci 53(4):550–560. doi: 10.1007/s11430-010-0023-1 CrossRefGoogle Scholar
  21. Hu J, Li ZW, Ding XL, Zhu JJ, Zhang L, Sun Q (2012a) 3D coseismic displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements. J Geodesy 86(11):1029–1041. doi: 10.1007/s00190-012-0563-6 CrossRefGoogle Scholar
  22. Hu J, Li ZW, Sun Q, Zhu JJ, Ding XL (2012b) Three-dimensional surface displacements from InSAR and GPS measurements with variance component estimation. IEEE Geosci Remote Sens Lett 9(4):754–758. doi: 10.1109/LGRS.2011.2181154 CrossRefGoogle Scholar
  23. Hu J, Li ZW, Zhang L, Ding XL, Zhu JJ, Sun Q, Ding W (2012c) Correcting ionospheric effects and monitoring two-dimensional displacement fields with multi-aperture InSAR technology with application to Yushu earthquake. Sci China Earth Sci 55(12):1961–1971. doi: 10.1007/s11430-012-4509-x CrossRefGoogle Scholar
  24. Hu J, Ding XL, Li ZW, Zhu JJ, Sun Q, Zhang L (2013a) Kalman-filter-based approach for multisensor, multitrack and multitemporal InSAR. IEEE Trans Geosci Remote Sens 51(7):4226–4239. doi: 10.1109/TGRS.2012.2227759 CrossRefGoogle Scholar
  25. Hu J, Li ZW, Ding XL, Zhu JJ, Sun Q (2013b) Derivation of 3-D coseismic surface displacement fields for the 2011 Mw 9.0 Tohoku-Oki earthquake from InSAR and GPS measurements. Geophys J Int 192(2):573–585. doi: 10.1093/gji/ggs033
  26. Jung HS, Lu Z, Won JS, Poland MP, Miklius A (2011) Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: application to the June 2007 eruption of Kilauea Volcano, Hawaii. IEEE Geosci Remote Sens Lett 8(1):34–38. doi: 10.1109/LGRS.2010.2051793 CrossRefGoogle Scholar
  27. Knothe S (1957) Observations of surface displacement under influence of mining and their theoretical interpretation. In: Proceedings of the European congress ground movement, Leeds, UK, pp 210–218Google Scholar
  28. Li PX, Tan ZX, Deng KZ (2011) Calculation of maximum ground movement and deformation caused by mining. Trans Nonferrous Met Soc China 21(3):562–569Google Scholar
  29. Li PX (2012) Study on regularity and prediction method of surface subsidence due to deep mining—taking Xuzhou Coal Mining Area as example. Dissertation, China University of Mining and TechnologyGoogle Scholar
  30. Litwiniszyn J (1957) The theories and model research of movements of ground masses. In: Proceedings of the European congress ground movement, Leeds, UK, pp 203–209Google Scholar
  31. Liu BC (1992) Theory of stochastic medium and its application in surface subsidence due to excavation. Trans NFsoc 2(3):17–24Google Scholar
  32. Li ZW, Ding XL, Zheng DW, Huang C (2008) Least squares-based filter for remote sensing image noise reduction. IEEE Trans Geosci Remote Sens 46(7):2044–2049. doi: 10.1109/TGRS.2008.916981 CrossRefGoogle Scholar
  33. Miguel CC, Andrew J, Hooper RH (2013) Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radar interferometry. J Appl Geophys 88:1–11. doi: 10.1016/j.jappgeo.2012.10.003 CrossRefGoogle Scholar
  34. Ng Alex HM, Ge LL, Zhang K, Chang HC, Li XJ, Rizos C, Omura M (2011) Deformation mapping in three dimensions for underground mining using InSAR—Southern highland coal field in New South Wales, Australia. Int J Remote Sens 32(22):7227–7256. doi: 10.1080/01431161.2010.519741 CrossRefGoogle Scholar
  35. Ng Alex HM, Ge LL, Zhang K, Li XJ (2012) Estimating horizontal and vertical movements due to underground mining using ALOS PALSAR. Eng Geol 143:18–27. doi: 10.1016/j.enggeo.2012.06.003 Google Scholar
  36. Peng SS (1992) Surface subsidence engineering. SME, New YorkGoogle Scholar
  37. Raucoules D, Maisons C, Camec C, Le Mouelic S, King C, Hosford S (2003) Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France)—comparison with ground-based measurement. Remote Sens Environ 88(4):468–478. doi: 10.1016/j.rse.2003.09.005 CrossRefGoogle Scholar
  38. Swift G (2014) Relationship between joint movement and mining subsidence. Bull Eng Geol Environ 73:163–176. doi: 10.1007/s10064-013-0539-7 CrossRefGoogle Scholar
  39. Werner CL, Wegmüller U, Strozzi T, Wiesmann A (2000) Gamma SAR and interferometric processing software. In: Proceedings of ERS-ENVISAT Symposium, Gothenburg, Sweden, vol 461, pp 211–219Google Scholar
  40. Wright TJ, Barry EP, Lu Z (2004) Toward mapping surface deformation in three dimensions using InSAR. Geophys Res Lett 31:L01607. doi: 10.1029/2003GL018827 CrossRefGoogle Scholar
  41. Zebker HA, Rosen PA, Goldstein RM, Gabriel A, Werner CL (1994) On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake. J Geophys Res 99(B10):19617–19634. doi: 10.1029/94JB01179 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zhi Wei Li
    • 1
  • Ze Fa Yang
    • 1
    Email author
  • Jian Jun Zhu
    • 1
  • Jun Hu
    • 1
  • Yun Jia Wang
    • 2
  • Pei Xian Li
    • 3
  • Guo Liang Chen
    • 2
  1. 1.School of Geosciences and Info-PhysicsCentral South UniversityChangshaChina
  2. 2.Jiangsu Provincial Key Lab of Resources and Information EngineeringChina University of Mining and TechnologyXuzhouChina
  3. 3.College of Geoscience and Surveying EngineeringChina University of Mining and TechnologyBeijingChina

Personalised recommendations