Skip to main content

GOCE: precise orbit determination for the entire mission

Abstract

The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was the first Earth explorer core mission of the European Space Agency. It was launched on March 17, 2009 into a Sun-synchronous dusk-dawn orbit and re-entered into the Earth’s atmosphere on November 11, 2013. The satellite altitude was between 255 and 225 km for the measurement phases. The European GOCE Gravity consortium is responsible for the Level 1b to Level 2 data processing in the frame of the GOCE High-level processing facility (HPF). The Precise Science Orbit (PSO) is one Level 2 product, which was produced under the responsibility of the Astronomical Institute of the University of Bern within the HPF. This PSO product has been continuously delivered during the entire mission. Regular checks guaranteed a high consistency and quality of the orbits. A correlation between solar activity, GPS data availability and quality of the orbits was found. The accuracy of the kinematic orbit primarily suffers from this. Improvements in modeling the range corrections at the retro-reflector array for the SLR measurements were made and implemented in the independent SLR validation for the GOCE PSO products. The satellite laser ranging (SLR) validation finally states an orbit accuracy of 2.42 cm for the kinematic and 1.84 cm for the reduced-dynamic orbits over the entire mission. The common-mode accelerations from the GOCE gradiometer were not used for the official PSO product, but in addition to the operational HPF work a study was performed to investigate to which extent common-mode accelerations improve the reduced-dynamic orbit determination results. The accelerometer data may be used to derive realistic constraints for the empirical accelerations estimated for the reduced-dynamic orbit determination, which already improves the orbit quality. On top of that the accelerometer data may further improve the orbit quality if realistic constraints and state-of-the-art background models such as gravity field and ocean tide models are used for the reduced-dynamic orbit determination.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. 1.

    http://www.esa.int/For_Media/Press_Releases/GOCE_gives_in_to_gravity.

  2. 2.

    http://earth.eo.esa.int/missions/goce/SSTI/.

  3. 3.

    http://earth.eo.esa.int/missions/goce/monthly/.

  4. 4.

    https://earth.esa.int/web/guest/-/goce-mass-property-file-8276.

  5. 5.

    http://earth.eo.esa.int/missions/goce/monthly/.

References

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophs Res 112(B9):401–419. doi:10.1029/2007JB004949

    Article  Google Scholar 

  2. Andreis D, Canuto E (2005) Drag-free and attitude control for the GOCE satellite. In: 44th IEEE conference on decision and control, 2005 and 2005 European control conference CDC-ECC05, pp 4041–4046. doi:10.1109/CDC.2005.1582794

  3. Basu S, Groves KM (2001) Specification and forecasting of outages on satellite communication and navigation systems. In: Song P, Singer HJ, Siscoe GL (eds) Space weather geophysical monograph series, vol 125, pp 424–430. doi:10.1029/GM125p0423

  4. Baur O, Bock H, Höck E, Jäggi A, Krauss S, Mayer-Gürr T, Reubelt T, Siemes C, Zehentner N (2014) Comparison of GOCE-GPS gravity fields derived by different approaches. J Geod. doi:10.1007/s00190-014-0736-6

  5. Bigazzi A, Frommknecht B (2010) Note on GOCE instruments positioning, Issue 3.1. http://earth.esa.int/download/goce/GOCE-LRR-GPS-positioning-Memo_3.1_[XGCE-GSEG-EOPG-TN-09-0007v3.1]

  6. Bock H, Jäggi A, Švehla D, Beutler G, Hugentobler U, Visser P (2007) Precise orbit determination for the GOCE satellite using GPS. Adv Space Res 39(10):1638–1647. doi:10.1016/j.asr.2007.02.053

    Article  Google Scholar 

  7. Bock H, Dach R, Jäggi A, Beutler G (2009) High-rate GPS clock corrections from CODE: support of 1 Hz applications. J Geod 83(11):1083–1094. doi:10.1007/s00190-009-0326-1

    Article  Google Scholar 

  8. Bock H, Jäggi A, Meyer U, Dach R, Beutler G (2011) Impact of GPS antenna phase center variations on precise orbits of the GOCE satellite. Adv Space Res 47(11):1885–1893. doi:10.1016/j.asr.2011.01.017

    Article  Google Scholar 

  9. Bock H, Jäggi A, Meyer U, Visser P, van den IJssel J, van Helleputte T, Heinze M, Hugentobler U, (2011b) GPS-derived orbits for the GOCE satellite. J Geod 85(11):807–818. doi:10.1007/s00190-011-0484-9

  10. Bouman J, Fiorot S, Fuchs M, Gruber T, Schrama E, Tscherning C, Veicherts M, Visser P (2011) GOCE gravitational gradients along the orbit. J Geod 85(11):791–805. doi:10.1007/s00190-011-0464-0

    Article  Google Scholar 

  11. Bouman J, Floberghagen R, Rummel R (2013) More than 50 years of progress in satellite gravimetry. EOS Trans Am Geophys Union 94(31):269–274. doi:10.1002/2013EO31

    Article  Google Scholar 

  12. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365. doi:10.1007/s00190-008-0281-2

    Article  Google Scholar 

  13. Dach R, Beutler G, Bock H, Fridez P, Gäde A, Hugentobler U, Jäggi A, Meindl M, Mervart L, Prange L, Schaer S, Springer T, Urschl C, Walser P (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Bern, Switzerland. http://www.bernese.unibe.ch/docs/DOCU50, user manual

  14. European GOCE Gravity Consortium (EGG-C) (2010) GOCE Standards, GO-TN-HPF-GS-0111. http://earth.esa.int/pub/ESA_DOC/GOCE/GOCE_Standards_3.2

  15. Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Staiger C, Piñeiro J, da Costa A (2011) Mission design, operation and exploitation of the Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission. J Geod 85(11):749–758. doi:10.1007/s00190-011-0498-3

    Article  Google Scholar 

  16. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer H, Biancale R, Lemoine JM, Barthelmes F, Bruinsma S, König R, Meyer U (2008) EIGEN-GL05C—a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys Res Abstr 10, EGU2008-A-03426

  17. Frommknecht B, Lamarre D, Meloni M, Bigazzi A, Floberghagen R (2011) GOCE level1b data processing. J Geod 85(11):759–775. doi:10.1007/s00190-011-0497-4

    Article  Google Scholar 

  18. van Helleputte T, Doornbos E, Visser P (2009) CHAMP and GRACE accelerometer calibration by GPS-based orbit determination. Adv Space Res 43(12):1890–1896. doi:10.1016/j.asr.2009.02.017

    Article  Google Scholar 

  19. Jäggi A (2007) Pseudo-stochastic orbit modeling of low earth satellites using the global positioning system. Geodätisch-geophysikalische Arbeiten in der Schweiz, Band 73, Schweizerische Geodätische Kommission, Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich, Zürich

  20. Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low-Earth orbiters. J Geod 80(1):47–60. doi:10.1007/s00190-006-0029-9

    Article  Google Scholar 

  21. Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geod 83(12):1145–1162. doi:10.1007/s00190-009-0333-2

    Article  Google Scholar 

  22. Jäggi A, Bock H, Floberghagen R (2011) GOCE orbit predictions for SLR tracking. GPS Solut 15(2):129–137. doi:10.1007/s10291-010-0176-6

    Article  Google Scholar 

  23. Jäggi A, Montenbruck O, Moon Y, Wermuth M, König R, Michalak G, Bock H, Bodenmann D (2012) Inter-agency comparison of TanDEM-X baseline solutions. Adv Space Res 50(2):260–271. doi:10.1016/j.asr.2012.03.027

    Article  Google Scholar 

  24. Jäggi A, Bock H, Meyer U, Beutler G, van den IJssel J (2014) GOCE - Assessment of GPS-only gravity field estimation. J Geod, in review

  25. Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10):1612–1619. doi:10.1016/j.asr.2007.03.012

  26. Kang Z, Tapley B, Bettadpur S, Ries J, Nagel P (2006) Precise orbit determination for GRACE using accelerometer data. Adv Space Res 38(9):2131–2136. doi:10.1016/j.asr.2006.02.021

  27. Koop R, Gruber T, Rummel R (2006) The status of the GOCE high-level processing facility. In: Proceedings of the 3rd GOCE user workshop, 6–8 November 2006, Frascati, Italy, ESA SP-627, pp 199–205

  28. Loiselet M, Stricker N, Menard Y, Luntama JP (2000) GRAS MetOps GPS-based atmospheric sounder. ESA Bull 102:3844

  29. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: insights from FES2004. Ocean Dynam 56:394–415. doi:10.1007/s10236-006-0086-x

    Article  Google Scholar 

  30. Mayer-Gürr T, Rieser D, Hoeck E, Brockmann JM, Schuh WD, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. In: International symposium on gravity, geoid and height systems GGHS (2012) Venice. Italy, Presentation

  31. McCarthy DD, Petit G (2004) IERS Conventions 2003. IERS Technical note no.32. Bundesamt für Kartographie und Geodäsie, Frankfurt am Main, Germany

  32. Meindl M, Beutler G, Thaller D, Dach R, Jäggi A (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. doi:10.1016/j.asr.2012.10.026

    Article  Google Scholar 

  33. Montenbruck O, Andres Y, Bock H, van Helleputte T, van den IJssel J, Loiselet M, Marquardt C, Silvestrin P, Visser P, Yoon Y, (2008) Tracking and orbit determination performance of the GRAS instrument on MetOp-A. GPS Solut 12(4):289–299. doi:10.1007/s10291-008-0091-2

  34. Montenbruck O, Neubert R (2011) Range correction for the CryoSat and GOCE laser retro-reflector arrays. Technical Note DLR/GSOC 11–01

  35. Pearlman M, Degnan J, Bosworth J (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  36. Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30(2):129–134. doi:10.1016/S0273-1177(02)00276-4

    Article  Google Scholar 

  37. Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85(11):777–790. doi:10.1007/s00190-011-0500-0

    Article  Google Scholar 

  38. Savcenko R, Bosch W (2008) EOT08a—empirical ocean tide model from multi-mission satellite altimetry. DGFI Report 81, Deutsches Geodätisches Forschungsinstitut, Munich, Germany

  39. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi:10.1007/s00190-007-0148-y

  40. SP-1272 E (2003) CryoSat science report. ESA Publications Division

  41. Standish EM (1998) JPL Planetary and Lunar Ephemerides, DE405/LE405. JPL IOM 312.F-98-048

  42. Švehla D, Rothacher M (2005) Kinematic precise orbit determination for gravity field determination. In: Sansò F (ed) The proceedings of the international association of geodesy, A Window on the Future of Geodesy, IUGG General Assembly 2003, vol 128, June 30–July 11, 2003, Springer, Sapporo, Japan. pp 181–188. doi10.1007/3-540-27432-4_32

  43. Tapley B, Bettadpur S, Ries J, Watkins M (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683):503–505

    Article  Google Scholar 

  44. van den IJssel J, Visser P, Doornbos E, Meyer U, Bock H, Jäggi A (2011) GOCE SSTI L2 tracking losses and their impact on POD performance. In: Proceedings of 4th international GOCE user workshop, 31 March–1 April, 2011, TU München, Munich, Germany, ESA, ESA communications

  45. van Helleputte T (2011) The integration of spaceborne accelerometry in the precise orbit determination of low-flying satellites. PhD thesis, Delft University of Technology

  46. Visser P, van den IJssel J, van Helleputte T, Bock H, Jäggi A, Beutler G, Švehla D, Hugentobler U, Heinze M (2009) Orbit determination for the GOCE satellite. Adv Space Res 43(5):760–768. doi:10.1016/j.asr.2008.09.016

Download references

Acknowledgments

This work was partly performed in the frame of the GOCE High-level Processing Facility (HPF), which is funded by ESA. The support of ESA is gratefully acknowledged. The activities of the CODE analysis center of the IGS provide the basis for our work. CODE is a joint venture of AIUB, Swiss Federal Office of Topography (swisstopo), Wabern, Switzerland, the German Federal Office of Cartography and Geodesy (BKG), Frankfurt a. Main, Germany, and the Institut für Astronomische and Physikalische Geodäsie (IAPG), Technische Universität München, Germany.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heike Bock.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bock, H., Jäggi, A., Beutler, G. et al. GOCE: precise orbit determination for the entire mission. J Geod 88, 1047–1060 (2014). https://doi.org/10.1007/s00190-014-0742-8

Download citation

Keywords

  • GOCE
  • Precise orbit determination
  • GPS
  • Accelerometer
  • SLR
  • Solar activity