Skip to main content
Log in

The most remote point method for the site selection of the future GGOS network

  • Review Paper
  • Published:
Journal of Geodesy Aims and scope Submit manuscript


The Global Geodetic Observing System (GGOS) proposes 30–40 geodetic observatories as global infrastructure for the most accurate reference frame to monitor the global change. To reach this goal, several geodetic observatories have upgrade plans to become GGOS stations. Most initiatives are driven by national institutions following national interests. From a global perspective, the site distribution remains incomplete and the initiatives to improve this are up until now insufficient. This article is a contribution to answer the question on where to install new GGOS observatories and where to add observation techniques to existing observatories. It introduces the iterative most remote point (MRP) method for filling in the largest gaps in existing technique-specific networks. A spherical version of the Voronoi-diagram is used to pick the optimal location of the new observatory, but practical concerns determine its realistic location. Once chosen, the process is iterated. A quality and a homogeneity parameter of global networks measure the progress of improving the homogeneity of the global site distribution. This method is applied to the global networks of VGOS, and VGOS co-located with SLR to derive some clues about where additional observatory sites or additional observation techniques at existing observatories will improve the GGOS network configuration. With only six additional VGOS-stations, the homogeneity of the global VGOS-network could be significantly improved by more than \(45\,\%\). From the presented analysis, 25 known or new co-located VGOS and SLR sites are proposed as the future GGOS backbone: Colombo, Easter Island, Fairbanks, Fortaleza, Galapagos, GGAO, Hartebeesthoek, Honiara, Ibadan, Kokee Park, La Plata, Mauritius, McMurdo, Metsahövi, Ny Alesund, Riyadh, San Diego, Santa Maria, Shanghai, Syowa, Tahiti, Tristan de Cunha, Warkworth, Wettzell, and Yarragadee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others


  1. IVS,

  2. ILRS,

  3. IGS,

  4. IDS,

  5. The number of plates as well as their exact position is under scientific discussion. The used model is just one simple example to visualize the MRP method in conjunction with such a geophysical tectonic plate model.


  • Altamimi Z, Collilieux X, Métivier L (2012) Analysis and results of ITRF2008 (IERS Technical Note 37) Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main. doi:10.1007/s00190-011-0444-4. ISBN: 978-3-86482-046-5 (print version)

  • Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE (1999) The International GPS Service (IGS): an interdisciplinary service in support of earth sciences. Adv Space Res 23(4):631–635. doi:10.1016/S0273-1177(99)00160-X

    Article  Google Scholar 

  • Beutler G, Rummel R (2012) Scientific rationale and development of the global geodetic observing system. In: Kenyon SC, Pacino MC, Marti UJ (eds) Scientific assembly of the International Association of Geodesy (IAG), geodesy for planet earth, Buenos Aires, Argentina, Proceedings of the 2009 IAG Symposium, Aug. 31–Sep. 4, 2009, IAG Symp, vol 136, pp 987–993. Springer, Berlin. doi:10.1007/978-3-642-20338-1_123

  • Blewitt G, Altamimi Z, Davis J, Gross R, Kuo C.-Y, Lemoine F.G, Moore AW, Neilan RE, Plag H.-P, Rothacher M, Shum CK, Sideris MG, Schne T, Tregoning P, Zerbini S (2010) Geodetic observations and global reference frame contributions to understanding sea-level rise and variability. In: Church JA, Woodworth PL, Aarup T, Wilson WS (eds) Understanding sea-level rise and variability. Wiley-Blackwell, Oxford. doi:10.1002/9781444323276.ch9

  • Delaunay B (1934) Sur la sphere vide (in French) Izvestia Akademii Nauk SSSR. Otdelenie Matematicheskikh i Estestvennykh Nauk 7:793–800

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal timescale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194. doi:10.1029/94GL02118

    Article  Google Scholar 

  • Dermanis A, Mueller II (1978) Earth rotation and network geometry optimization for very long baseline interferometry. Bull Geod 52(2):131–158. doi:10.1007/BF02521695

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83:191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Grafarend E (1974) Optimization of geodetic networks. Boll Geod Sci Aff 33:351–406

  • Grafarend E, Sanso F (eds) (1986) Optimization and design of geodetic networks. Springer, Berlin

    Google Scholar 

  • Hase H (1999) Theorie und Praxis Globaler Bezugssysteme (in German) Mitteilungen des BKG. Band 13. ISSN: 1436-3445. ISBN: 3-88648-097-6

  • Hase H (2000) New method for the selection of additional sites for the homogenisation of an inhomogeneous cospherical point distribution. In: Rummel R, Drewes H, Bosch W, Hornik H (eds) Towards an integrated global geodetic observing system (IGGOS). IAG Section II Symposium Munich, October 5–9, 1998. Springer, Berlin, pp 180–183. doi:10.1007/978-3-642-59745-9_35

  • Hase H, Böer A, Riepl S, Schlüter W (2000) Transportable integrated geodetic observatory (TIGO) International VLBI Service for Geodesy and Astrometry 2000 General Meeting Proceedings, pp 383–387

  • Hase H (2011) Geodesy, Networks and Reference Systems. In: Gupta HK (ed) Encyclopedia of solid earth geophysics, vol. 1. Springer, Berlin, pp 323–331. doi:10.1007/978-90-481-8702-7_84

  • Hase H, Behrend D, Ma C, Petrachenko B, Schuh H, Whitney A (2012) The emerging VGOS network of the IVS. In: Behrend D, Baver KD (eds) IVS 2012 General meeting proceedings launching the next-generation IVS network NASA/CP-2012-217504, pp 8–12.

  • McGarry J, Wetzel S, Cheek J, Zagwodzki T, Clarke C, Donovan H, Horvath J, Mann A, Patterson D, Ricklefs R (2011) SLR automation for the new space geodesy multi-technique sites. In: Proceedings of ILRS workshop 2011, Bad Kötzting.

  • Minster JB, Altamimi Z, Blewitt G, Carter WE, Cazenave A, Dragert H, Herring TA, Larson KM, Ries JC, Sandwell DT, Wahr JM, Davis JL, Feary DA, Shanley LA, Edkin E, Gibbs CR, Rogers ND (2010) Precise geodetic infrastructure: national requirements for a shared resource. The National Academies Press, Washington, D.C. doi:10.1038/NGEO938. ISBN: 978-0-309-15811-4

  • Okabe A, Boots B, Sugihara K, Chiu SN (2000) Spatial tessellations concepts and applications of Voronoi diagrams, 2nd edn. Wiley, New York. doi:10.1002/9780470317013.ch6

  • Pavlis EC, Ries JC, MacMillan DS, Kuzmicz-Cieslak M, Ma C, Rowlands DD (2008) The future global geodetic networks to support GGOS EOS. Transactions AGU, vol 89, (53 Fall Meeting Supplemental)

  • Petrachenko WT, Niell AE, Corey BE, Behrend D, Schuh H, Wresnik J (2012) VLBI2010: next generation VLBI system for geodesy and astrometry. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet earth. IAG Symp, vol 136. Springer, Berlin, pp 999–1006. ISBN: 978-3-642-20337-4

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Plag H-P, Pearlman M (2009) (eds) Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin. doi:10.1007/978-3-642-02687-4

  • Rummel R, Drewes H, Beutler G (2002) Integrated global geodetic observing system (IGGOS): a candidate IAG project. In: Adam J, Schwarz KP (eds) Scientific assembly of the international association of geodesy, Budapest, Hungary, Sept. 2–7, 2001, Vistas for geodesy in the new millenium. IAG Symp, vol 125. Springer, Berlin, pp 609–614. doi:10.1007/978-3-662-04709-5_102

  • Schneider M (1990) Konzept und Rolle von Fundamentalstationen (in German) In: Schneider M (eds) Satellitengeodäsie, Ergebnisse aus dem gleichnamigen Sonderforschungsbereich der Technischen Universität München, VCH Weinheim, pp 35–38. ISBN: 3-527-27712-9

  • Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:6880. doi:10.1016/j.jog.2012.07.007

    Article  Google Scholar 

  • Voronoi G (1907) Nouvelles applications des parametres continus la theorie des formes quadratiques (in French). J Reine Angew Math 133:97–178. doi:10.1515/crll.1908.133.97

  • Williams SDP, Willis P (2006) Error analysis of weekly station coordinates in the DORIS network. J Geod 80(8–11):525–539. doi:10.1007/s00190-006-0056-6

  • Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2010) The international DORIS service (IDS): toward maturity. In: Willis P (ed) DORIS: scientific applications in geodesy and geodynamics, vol 45, No. 12, pp 1408–1420. doi:10.1016/j.asr.2009.11.018

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hayo Hase.



The appendix contains as example a table of the computed circumcircle for the identification of the MRP Table 5.

Table 5 VGOS-network: computation of Voronoi-points

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hase, H., Pedreros, F. The most remote point method for the site selection of the future GGOS network. J Geod 88, 989–1006 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: