Skip to main content
Log in

Self-consistent treatment of tidal variations in the geocenter for precise orbit determination

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We show that the current levels of accuracy being achieved for the precise orbit determination (POD) of low-Earth orbiters demonstrate the need for the self-consistent treatment of tidal variations in the geocenter. Our study uses as an example the POD of the OSTM/Jason-2 satellite altimeter mission based upon Global Positioning System (GPS) tracking data. Current GPS-based POD solutions are demonstrating root-mean-square (RMS) radial orbit accuracy and precision of \({<}1\) cm and 1 mm, respectively. Meanwhile, we show that the RMS of three-dimensional tidal geocenter variations is \({<}6\) mm, but can be as large as 15 mm, with the largest component along the Earth’s spin axis. Our results demonstrate that GPS-based POD of Earth orbiters is best performed using GPS satellite orbit positions that are defined in a reference frame whose origin is at the center of mass of the entire Earth system, including the ocean tides. Errors in the GPS-based POD solutions for OSTM/Jason-2 of \({<}4\) mm (3D RMS) and \({<}2\) mm (radial RMS) are introduced when tidal geocenter variations are not treated consistently. Nevertheless, inconsistent treatment is measurable in the OSTM/Jason-2 POD solutions and manifests through degraded post-fit tracking data residuals, orbit precision, and relative orbit accuracy. For the latter metric, sea surface height crossover variance is higher by \(6~\hbox {mm}^{2}\) when tidal geocenter variations are treated inconsistently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Metivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Antreasian PG, Rosborough GW (1992) Prediction of radiant energy forces on the TOPEX/POSEIDON spacecraft. J Spacecr Rocket 29:81–90. doi:10.2514/3.26317

    Article  Google Scholar 

  • Beckley BD, Zelensky NP, Holmes SA, Lemoine FG, Ray RD, Mitchum GT, Desai SD, Brown ST (2010) Assessment of the Jason-2 extension to the TOPEX/Poseidon, Jason-1 sea-surface height time series for global mean sea level monitoring. Mar. Geod. 33(S1):447–471. doi:10.1080/01490419.2010.491029

    Article  Google Scholar 

  • Bertiger W et al (1994) GPS precise tracking of TOPEX/POSEIDON: results and implications. J. Geophys. Res 99(C12):24449–24464. doi:10.1029/94JC01171

    Article  Google Scholar 

  • Bertiger W, Desai S, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010a) Single receiver phase ambiguity resolution with GPS data. J Geod 84:327–337. doi:10.1007/s00190-010-0371-9

    Article  Google Scholar 

  • Bertiger W, Desai S, Dorsey A, Haines B, Harvey N, Kuang D, Sibthorpe A, Weiss JP (2010b) Sub-centimeter precision orbit determination with GPS for ocean altimetry. Mar Geod 33(S1):363–378. doi:10.1080/01490419.2010.487800

    Article  Google Scholar 

  • Bettadpur SV, Eanes RJ (1994) Geographical representation of radial orbit perturbations due to ocean tides: implications for satellite altimetry. J Geophys Res 99(C12):24883–24894. doi:10.1029/94JC02080

    Article  Google Scholar 

  • Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2): doi:10.1029/2002JB002082

  • Cartwright DE, Ray RD (1990) Oceanic tides from Geosat altimetry. J Geophys Res 95(C3):3069–3090. doi:10.1029/JC095iC03P03069

    Article  Google Scholar 

  • Cartwright DE, Ray RD (1991) Energetics of global ocean tides from Geosat altimetry. J Geophys Res 96(C9):16897–16912. doi:10.1029/91JC01059

    Article  Google Scholar 

  • Cerri L, Berthias JP, Bertiger WI, Haines BJ, Lemoine FG, Mercier F, Ries JC, Willis P, Zelensky NP, Ziebart M (2010) Precision orbit determination standards for the Jason series of altimeter missions. Mar Geod 33(S1):379–418. doi:10.1080/01490419.2010.488966

    Article  Google Scholar 

  • Christensen EJ, Haines BJ, McColl KC, Nerem RS (1994) Observations of geographically correlated orbit errors for TOPEX/POSEIDON using the global positioning system. Geophys Res Lett 21(19):2175–2178. doi:10.1029/94GL02191

    Article  Google Scholar 

  • Collilieux X, Wöppelmann G (2011) Global sea-level rise and its relation to the terrestrial reference frame. J Geod 85(1):9–22. doi:10.1007/s00190-010-0412-4

    Article  Google Scholar 

  • Desai SD, Ray RD (2014) Consideration of tidal variations in the geocenter on satellite altimeter observations of ocean tides. Geophys Res Lett 41. doi:10.1002/2014GL059614

  • Desai SD, Wahr JM (1995) Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry. J Geophys Res 100(C12):25205–25228. doi:10.1029/95JC02258

    Article  Google Scholar 

  • Desai SD, Bertiger W, Haines B, Gross J, Harvey N, Selle C, Sibthorpe A, Weiss JP (2011) Results from the reanalysis of global GPS data in the IGS08 reference frame. Fall American Geophysical Union Meeting, San Francisco, CA, 5–9 December

  • Dong D, Dickey JO, Chao Y, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys Res Lett 24(15):1867–1870. doi:10.1029/97GL01849

    Article  Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83:191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Egbert GD, Ray RD (2003) Deviation of long-period tides from equilibrium: kinematics and geostrophy. J Phys Oceanogr 33:822–839

    Article  Google Scholar 

  • Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys 10:761–797

    Article  Google Scholar 

  • Fu L-L, Christensen EJ, Yamarone CA Jr, Lefebvre M, Ménard Y, Dorrer M, Escudier P (1994) TOPEX/POSEIDON mission overview. J Geophys Res 99(C12):24369–24381. doi:10.1029/94JC01761

    Article  Google Scholar 

  • Fu Y, Freymueller JT, van Dam T (2012) The effect of using inconsistent ocean tidal loading models on GPS coordinate solutions. J Geod 86:409–421. doi:10.1007/s00190-011-0528-1

    Article  Google Scholar 

  • Haines BJ, Born GH, Williamson RG, Koblinsky CJ (1994) Application of the GEM-T2 gravity field to altimetric satellite orbit computation. J Geophys Res 99(C8):16237–16254. doi:10.1029/94JC00257

    Article  Google Scholar 

  • Haines B, Bar-Sever Y, Bertiger W, Desai S, Willis P (2004) One-centimeter orbit determination for Jason-1: new GPS-base strategies. Mar Geod 27:299–318. doi:10.1080/01390410490465300

    Article  Google Scholar 

  • Lambeck K (1988) Geophysical geodesy. Oxford University Press, New York

    Google Scholar 

  • Lambin J, Morrow R, Fu L-L, Willis JK, Bonekamp H, Lillibridge J, Perbos J, Zaouche G, Vaze P, Bannoura W, Parisot F, Thouvenot E, Coutin-Faye S, Lindstrom E, Mignogno M (2010) The OSTM/Jason-2 mission. Mar Geod 33(S1):4–25. doi:10.1080/01490419.2010.491030

    Article  Google Scholar 

  • Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. J Inst Navig 56(2):135–149

    Google Scholar 

  • Lemoine FG, Zelensky NP, Chinn DS, Pavlis DE, Rowlands DD, Beckley BD, Luthcke SB, Willis P, Ziebart M, Sibthorpe A, Boy JP, Luceri V (2010) Towards development of consistent orbit series for TOPEX, Jason-1, and Jason-2. Adv Space Res 46(12):1513–1540. doi:10.1016/j.asr.2010.05.007

    Article  Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modeling the global ocean tides: insights from FES2004. Ocean Dyn 56:394–415. doi:10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • Marshall JA, Zelensky NR, Klosko SM, Chinn DS, Luthcke SB, Rachlin KE, Williamson RG (1995) The temporal and spatial characteristics of TOPEX/POSEIDON radial orbit error. J Geophys Res 100 (C12):25331–25352. doi:10.1029/95JC01845

    Google Scholar 

  • Masters D, Nerem RS, Choe C, Leuliette E, Beckley B, White N, Ablain M (2012) Comparison of global mean sea level time series from TOPEX/Poseidon, Jason-1, and Jason-2. Mar Geod 35(sup1):20–41. doi:10.1080/01490419.2012.717862

    Article  Google Scholar 

  • Melachroinos SA, Lemoine FG, Zelensky NP, Rowlands DD, Luthcke SB, Bordyugov O (2013) The effect of geocenter motion on Jason-2 orbits and the mean sea level. Adv Space Res 51(8):1323–1334. doi:10.1016/j.asr.2012.06.004

    Google Scholar 

  • Ménard Y, Fu L-L, Escudier P, Parisot F, Perbos J, Vincent P, Desai S, Haines B, Kunstmann G (2003) The Jason-1 mission. Mar Geod 26(3–4):131–146. doi:10.1080/714044514

    Google Scholar 

  • Morel L, Willis P (2005) Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data. Adv Space Res 36(3):358–368. doi:10.1016/jasr.2005.05.113

    Article  Google Scholar 

  • Nerem RS, Lerch FJ, Marshall JA, Pavlis EC, Putney BH, Tapley BD, Eanes RJ, Ries JC, Schutz BE, Shum CK, Watkins MM, Klosko SM, Chan JC, Luthcke SB, Patel GB, Pavlis NK, Williamson RG, Rapp RH, Biancale R, Nouel F (1994) Gravity model development for TOPEX/POSEIDON: joint gravity models 1 and 2. J Geophys Res 99(C12):24421–24447. doi:10.1029/94JC01376

    Google Scholar 

  • Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33(S1):435–446. doi:10.1080/01490419.2010.491031

    Article  Google Scholar 

  • Petit G, Luzum B, International Earth Rotation Service Conventions (2010) Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main

  • Ray RD (1999) A global ocean tide model from TOPEX/POSEIDON altimetry, GOT99.2, Rep. NASA/TM-1999-209478. Goddard Space Flight Center, Greenbelt, MD

  • Ray RD, Ponte R (2003) Barometric tides from ECMWF operational analysis. Ann Geophys 21:1897–1910

    Article  Google Scholar 

  • Ray RD, Luthcke SB, Boy J-P (2009) Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data. J Geophys Res 114:C09017. doi:10.1029/2009JC005362

    Google Scholar 

  • Schmid R, Rothacher M, Thaller D, Steigenberger P (2005) Absolute phase center corrections of satellite and receiver antennas: impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Solut. doi:10.1007/s10291-005-0134-x

    Google Scholar 

  • Shum CK, Woodworth PL, Andersen OB, Egbert G, Francis O, King C, Klosko SM, Le Provost C, Li X, Molines J-M, Parke ME, Ray RD, Schlax MG, Stammer D, Tierney CC, Vincent P, Wunsch CI (1997) Accuracy assessment of recent ocean tide models. J Geophys Res 102(C11):25173–25194. doi:10.1029/97JC00445

    Article  Google Scholar 

  • Tapley BD, Ries JC, Davis GW, Eanes RJ, Schutz BE, Shum CK, Watkins MM, Marshall JA, Nerem RS, Putney BH, Klosko SM, Luthcke SB, Pavlis D, Williamson RG, Zelensky NP (1994) Precision orbit determination for TOPEX/POSEIDON. J Geophys Res 99(C12):24383–24404. doi:10.1029/94JC01645

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity and climate experiment: mission overview and early result. Geophys Res Lett 31(9):L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Watkins MM, Eanes RJ (1997) Observations of tidally coherent diurnal and semidiurnal variations in the geocenter. Geophys Res Lett 24(17):2231–2234. doi:10.1029/97GL52059

    Google Scholar 

  • Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61. doi:10.1016/j.jog.2012.01.007

    Google Scholar 

  • Yunck TP, Wu S-C, Wu J-T, Thornton CL (1990) Precise tracking of remote sensing satellites with the global positioning system. IEEE Trans Geosc Rem Sens 28(1):108–116

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. doi:10.1029/96JB03860

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. We thank Richard Ray for providing us with the GOT4.8 ocean tide model, and AVISO for providing us with the FES2004 and FES2012 ocean tide models. We thank Felix Landerer for providing us with the JPLRL05M time-varying gravity model determined from the GRACE mission. Feedback from Geoffrey Blewitt and an anonymous reviewer are appreciated and served to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailen D. Desai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, S.D., Bertiger, W. & Haines, B.J. Self-consistent treatment of tidal variations in the geocenter for precise orbit determination. J Geod 88, 735–747 (2014). https://doi.org/10.1007/s00190-014-0718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0718-8

Keywords

Navigation