Journal of Geodesy

, Volume 88, Issue 3, pp 207–222 | Cite as

Long-term vertical land motion from double-differenced tide gauge and satellite altimetry data

  • Alvaro Santamaría-GómezEmail author
  • Médéric Gravelle
  • Guy Wöppelmann
Original Article


We present a new approach to estimate precise long-term vertical land motion (VLM) based on double-differences of long tide gauge (TG) and short altimetry data. We identify and difference rates of pairs of highly correlated sea level records providing relative VLM estimates that are less dependent on record length and benefit from reduced uncertainty and mitigated biases (e.g. altimeter drift). This approach also overcomes the key limitation of previous techniques in that it is not geographically limited to semi-enclosed seas and can thus be applied to estimate VLM at TGs along any coast, provided data of sufficient quality are available. Using this approach, we have estimated VLM at a global set of 86 TGs with a median precision of 0.7 mm/year in a conventional reference frame. These estimates were compared to previous VLM estimates at TGs in the Baltic Sea and to estimates from co-located Global Positioning System (GPS) stations and Glacial Isostatic Adjustment (GIA) predictions. Differences with respect to the GPS and VLM estimates from previous studies resulted in a scatter of around 0.6 mm/year. Differences with respect to GIA predictions had a larger scatter in excess of 1 mm/year. Until satellite altimetry records reach enough length to estimate precise VLM at each TG, this new approach constitutes a substantial advance in the geodetic monitoring of TGs with major applications in long-term sea level change and climate change studies.


Vertical land motion Tide gauges  Satellite altimetry GPS 



We fully acknowledge Xavier Collilieux, Matt King and Marta Marcos for their comments on the manuscript. We are grateful to Jake Griffiths for his support and comments on the NGS GPS velocities. We also thank four anonymous reviewers and the associate editor. Tide gauge data have been provided by the PSMSL. The altimeter products were produced by Ssalto/Duacs and distributed by AVISO with support from Centre National d’Etudes Spatiales (CNES). Sea surface pressure data used in this study have been provided by the ECMWF Data Server. ULR GPS velocities were provided by the SONEL data assembly center supported by the Institut National des Sciences de l’Univers (INSU/CNRS). The University of La Rochelle computing infrastructure was partly funded by the European Union (contract 31031-2008, European Regional Development Fund). The work presented in this article was supported by the French Research National Agency (ANR) through the CEP-2009 program (Project ‘Coastal Environmental Changes: Impact of sea LEvel rise’ (CECILE) under grant number ANR-09-CEP-001-01). Figures 2, 3 and 6 were produced with the Gnuplot software. Figures 4, 5 and 7 were produced with the Generic Mapping Tool (Wessel and Smith 1991).

Supplementary material

190_2013_677_MOESM1_ESM.txt (8 kb)
Supplementary material 1 (txt 7 KB)


  1. Ablain M, Cazenave A, Valladeau G, Guinehut S (2009) A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci 5:193–201. doi: 10.5194/os-5-193-2009 CrossRefGoogle Scholar
  2. Agnew DC (1992) The time-domain behavior of power-law noises. Geophys Res Lett 19(4):333–336CrossRefGoogle Scholar
  3. Altamimi Z, Collilieux X, Metivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi: 10.1007/s00190-011-0444-4457 CrossRefGoogle Scholar
  4. Argus DF, Peltier WR (2010) Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives. Geophys J Int 181:697–723. doi: 10.1111/j.1365-246X.2010.04562.x Google Scholar
  5. Brooks BA, Merrifield M, Foster J, Werner CL, Gomez F, Bevis M, Gill S (2007) Space geodetic determination of spatial variability in relative sea level change, Los Angeles basin. Geophys Res Lett 34:L01611. doi: 10.1029/2006GL028171 CrossRefGoogle Scholar
  6. Burgette RJ, Weldon RJ II, Schmidt DA (2009) Interseismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone. J Geophys Res 114:B01408. doi: 10.1029/2008JB005679 Google Scholar
  7. Burgette RJ, Watson CS, Church JA, White NJ, Tregoning P, Coleman R (2013) Characterizing and minimizing the effects of noise in tide gauge time series: relative and geocentric sea level rise around Australia. Geophys J Int. doi: 10.1093/gji/ggt131
  8. Cazenave A, Dominh K, Ponchaut F, Soudarin L, Cretaux JF, Le Provost C (1999) Sea level changes from Topex–Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS. Geophys Res Lett 26:2077–2080CrossRefGoogle Scholar
  9. Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2(1):145–173. doi: 10.1146/annurev-marine-120308-081105145 Google Scholar
  10. Chambers DP, Merrifield MA, Nerem RS (2012) Is there a 60-year oscillation in global mean sea level? Geophys Res Lett 39(18):1–6. doi: 10.1029/2012GL052885 Google Scholar
  11. Collilieux X, Wöppelmann G (2011) Global sea-level rise and its relation to the terrestrial reference frame. J Geod 85(1):9–22. doi: 10.1007/s00190-010-0412-4 CrossRefGoogle Scholar
  12. García D, Vigo I, Chao BF, Martínez MC (2007) Vertical crustal motion along the Mediterranean and Black Sea coast derived from ocean altimetry and tide gauge data. Pure Appl Geophys 164:851–863. doi: 10.1007/s00024-007-0193-8 CrossRefGoogle Scholar
  13. Gommenginger C, Thibaut P, Fenoglio-Marc L, Quartly G, Deng X, Gómez-Enri J, Challenor P, Gao Y (2011) Retracking altimeter waveforms near the coasts. In: Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 61–101CrossRefGoogle Scholar
  14. Guo JY, Huang ZW, Shum CK, van der Wal W (2012) Comparisons among contemporary glacial isostatic adjustment models. J Geod 61:129–137. doi: 10.1016/j.jog.2012.03.011 CrossRefGoogle Scholar
  15. Holgate SJ (2007) On the decadal rates of sea level change during the twentieth century. Geophys Res Lett 34(1):2001–2004. doi: 10.1029/2006GL0284922001 Google Scholar
  16. Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, Foden PR, Gordon KM, Jevrejeva S, Pugh J (2013) New data systems and products at the permanent service for mean sea level. J Coastal Res 29(3):493–504. doi: 10.2112/JCOASTRES-D-12-00175.1 CrossRefGoogle Scholar
  17. Hughes CW, Williams SDP (2010) The color of sea level: importance of spatial variations in spectral shape for assessing the significance of trends. J Geophys Res 115:C10048. doi: 10.1029/2010JC006102 CrossRefGoogle Scholar
  18. Jevrejeva S, Moore JC, Grinsted A, Woodworth PL (2008) Recent global sea level acceleration started over 200 years ago? Geophys Res Lett 35(8):8–11. doi: 10.1029/2008GL033611 Google Scholar
  19. Johansson JM, Davis JL, Scherneck HG, Milne GA, Vermeer M, Mitrovica JX, Bennett RA, Jonsson B, Elgered G, Elósegui P, Koivula H, Poutanen M, Rönnäng BO, Shapiro II (2002) Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. J Geophys Res 107(B8):2157. doi: doi:10.1029/2001JB000400 Google Scholar
  20. King MA, Keshin M, Whitehouse PL, Thomas ID, Milne G, Riva REM (2012) Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement. Geophys Res Lett 39(14):1–5. doi: 10.1029/2012GL0523481 Google Scholar
  21. Kuo CY, Shum CK, Braun A, Mitrovica JX (2004) Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia. Geophys Res Lett 31(1):4–7. doi: 10.1029/2003GL0191064 Google Scholar
  22. Kuo CY, Shum CK, Braun A, Cheng KC, Yi Y (2008) Vertical motion determined using satellite altimetry and tide gauges. Terr Atmos Ocean Sci 19(1–2):21–35. doi: 10.3319/TAO.2008.19.1-2.21(SA)1.21 CrossRefGoogle Scholar
  23. Larsen CF, Echelmeyer KA, Freymueller JT, Motyka RJ (2003) Tide gauge records of uplift along the northern Pacific-North American plate boundary, 1937 to 2001. J Geophys Res 108(B4):2216. doi: 10.1029/2001JB001685 CrossRefGoogle Scholar
  24. Legrand J, Bergeot N, Bruyninx C, Wöppelmann G, Bouin MN, Altamimi Z (2010) Impact of regional reference frame definition on geodynamic interpretations. J Geod 49(3–4):116–122. doi: 10.1016/j.jog.2009.10.002 CrossRefGoogle Scholar
  25. Leuliette EW, Nerem RS, Mitchum GT (2004) Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Mar Geod 27:79–94. doi: 10.1080/01490410490465193 CrossRefGoogle Scholar
  26. Lidberg M, Johansson JM, Scherneck HG, Milne GA (2010) Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. J Geod 50(1):18. doi: 10.1016/j.jog.2009.11.0108 Google Scholar
  27. Mainville A, Craymer MR (2005) Present-day tilting of the Great Lakes region based on water level gauges. Geol Soc Am Bull 117(7):1070. doi: 10.1130/B25392.1 CrossRefGoogle Scholar
  28. Mazzotti S, Jones C, Thomson RE (2008) Relative and absolute sea level rise in western Canada and northwestern United States from a combined tide gauge-GPS analysis. J Geophys Res 113(C11):1–19. doi: 10.1029/2008JC0048351 Google Scholar
  29. Mazzotti S, Lambert A, Van der Kooij M, Mainville A (2009) Impact of anthropogenic subsidence on relative sea-level rise in the Fraser River delta. Geology 37(9):771–774. doi: 10.1130/G25640A.1771 CrossRefGoogle Scholar
  30. Métivier L, Collilieux X, Altamimi Z (2012) ITRF2008 contribution to glacial isostatic adjustment and recent ice melting assessment. Geophys Res Lett 39(1):1–6. doi: 10.1029/2011GL049942 Google Scholar
  31. Nerem RS, Mitchum GT (2002) Estimates of vertical crustal motion derived from differences of Topex/Poseidon and tide gauge sea level measurements. Geophys Res Lett 29:1934CrossRefGoogle Scholar
  32. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  33. Raucoules D, Le Cozannet G, Wöppelmann G, de Michele M, Gravelle M, Daag A, Marcos M (2013) High nonlinear urban ground motion in Manila (Philippines) from 1993 to 2010 observed by DInSAR: implications for sea-level measurement. Remote Sens Environ 139:386–397CrossRefGoogle Scholar
  34. Ray RD, Beckley BD, Lemoine FG (2010) Vertical crustal motion derived from satellite altimetry and tide gauges, and comparisons with DORIS measurements. Adv Space Res 45(12):1522. doi: 10.1016/j.asr.2010.02.0201510 CrossRefGoogle Scholar
  35. Santamaría-Gómez A, Gravelle M, Collilieux X, Guichard M, Míguez BM, Tiphaneau P, Wöppelmann G (2012) Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Global Planet Change 98–99:6–17. doi: 10.1016/j.gloplacha.2012.07.0076 Google Scholar
  36. Spada G, Galassi G (2012) New estimates of secular sea level rise from tide gauge data and GIA modelling. Geophys J Int 191:1067–1094. doi: 10.1111/j.1365-246X.2012.05663.x Google Scholar
  37. Teferle FN, Bingley RM, Orliac EJ, Williams SDP, Woodworth PL, McLaughlin D, Baker TF, Shennan I, Milne GA, Bradley SL, Hansen DN (2009) Crustal motions in Great Britain: evidence from continuous GPS, absolute gravity and Holocene sea level data. Geophys J Int 178(1):23–46. doi: 10.1111/j.1365-246X.2009.04185.x23 CrossRefGoogle Scholar
  38. Wahl T, Haigh ID, Woodworth PL, Albrecht F, Dillingh D, Jensen J, Nicholls RJ, Weisse R, Wöppelmann G (2013) Observed mean sea level changes around the North Sea coastline from 1800 to present. Earth Sci Rev 124:51–67. doi: 10.1016/j.earscirev.2013.05.003 CrossRefGoogle Scholar
  39. Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans AGU 72, pp 441, 445–446Google Scholar
  40. Williams SDP (2008) CATS: GPS coordinate time series analysis software. GPS Solutions 12(2):147–153. doi: 10.1007/s10291-007-0086-4147 CrossRefGoogle Scholar
  41. Woodworth PL, Menéndez M, Roland Gehrels W (2011) Evidence for century-timescale acceleration in mean sea levels and for recent changes in extreme sea levels. Surv Geophys 32(4–5):603–618. doi: 10.1007/s10712-011-9112-8 CrossRefGoogle Scholar
  42. Wöppelmann G, Martin Miguez B, Bouin MN, Altamimi Z (2007) Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Global Planet Change 57(3–4):396–406. doi: 10.1016/j.gloplacha.2007.02.002396 CrossRefGoogle Scholar
  43. Wöppelmann G, Pouvreau N, Coulomb A, Simon B, Woodworth PL (2008) Tide gauge datum continuity at Brest since 1711: France’s longest sea-level record. Geophys Res Lett 35(22):5. doi: 10.1029/2008GL0357831 Google Scholar
  44. Wöppelmann G, Letetrel C, Santamaría A, Bouin MN, Collilieux X, Altamimi Z, Williams SDP (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36(12):1–6. doi: 10.1029/2009GL0387201 Google Scholar
  45. Wöppelmann G, Marcos M (2012) Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. J Geophys Res 117(C1):14. doi: 10.1029/2011JC0074691 Google Scholar
  46. Zerbini S, Plag HP, Baker T, Becker M, Billiris H, Bürki B, Kahle HG et al (1996) Sea level in the Mediterranean: a first step towards separating crustal movements and absolute sea-level variations. Global Planet Change 14(1–2):1–48. doi: 10.1016/0921-8181(96)00003-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alvaro Santamaría-Gómez
    • 1
    • 2
    Email author
  • Médéric Gravelle
    • 2
  • Guy Wöppelmann
    • 2
  1. 1.IGN, Observatorio de YebesGuadalajaraSpain
  2. 2.LIENSs, Université de La Rochelle, CNRSLa RochelleFrance

Personalised recommendations