Journal of Geodesy

, Volume 87, Issue 8, pp 791–804 | Cite as

Automated and continual determination of radio telescope reference points with sub-mm accuracy: results from a campaign at the Onsala Space Observatory

  • Michael Lösler
  • Rüdiger Haas
  • Cornelia Eschelbach
Original Article

Abstract

The Global Geodetic Observing System (GGOS) requires sub-mm accuracy, automated and continual determinations of the so-called local tie vectors at co-location stations. Co-location stations host instrumentation for several space geodetic techniques and the local tie surveys involve the relative geometry of the reference points of these instruments. Thus, these reference points need to be determined in a common coordinate system, which is a particular challenge for rotating equipment like radio telescopes for geodetic Very Long Baseline Interferometry. In this work we describe a concept to achieve automated and continual determinations of radio telescope reference points with sub-mm accuracy. We developed a monitoring system, including Java-based sensor communication for automated surveys, network adjustment and further data analysis. This monitoring system was tested during a monitoring campaign performed at the Onsala Space Observatory in the summer of 2012. The results obtained in this campaign show that it is possible to perform automated determination of a radio telescope reference point during normal operations of the telescope. Accuracies on the sub-mm level can be achieved, and continual determinations can be realized by repeated determinations and recursive estimation methods.

Keywords

VLBI Radio telescope Reference point determination Monitoring Least-squares 

References

  1. Burg M (2012) Einrichtung des Monitoringsystems HEIMDALL zur automatischen Bestimmung des IVS-Referenzpunktes an der Fundamentalstation Onsala. Bachelor’s thesis, University of Applied Sciences Frankfurt am Main (unpublished)Google Scholar
  2. Crocetto N, Gatti M, Russo P (2000) Simplified formulae for the BIQUE estimation of variance components in disjunctive observation groups. J Geodesy 74:447–457. doi:10.1007/s001900000109 CrossRefGoogle Scholar
  3. Dawson J, Sarti P, Johnston G, Vittuari L (2007) Indirect approach to invariant point determination for SLR and VLBI systems: an assessment. J Geodesy 81:433–441. doi:10.1007/s00190-006-0125-x Google Scholar
  4. Eschelbach C (2002) Determination of the IVS reference point at the Onsala Space Observatory in a local geodetic Reference frame. Diploma thesis. University of Karlsruhe (unpublished)Google Scholar
  5. Favre C, Hennes M (2000) Zum Einfluss der geometrischen Ausrichtung von 360-Reflektoren bei Messungen mit automatischer Zielerfassung. Vermessung Photogrammetrie Kulturtechnik 2:72–78Google Scholar
  6. Ghilani CD, Wolf PR (2006) Adjustment computations—spatial data analysis, 4nd edn. Wiley, Hoboken. doi:10.1002/9780470121498
  7. Haas R, Bergstrand S (2010) COLD MAGICS—continuous local deformation monitoring of an arctic geodetic fundamental station. In: Behrend D, Baver KD (eds) VLBI2010: from vision to reality, IVS 2010 general meeting proceedings, NASA/CP-2010-215864, pp 118–122Google Scholar
  8. Haas R, Nothnagel A, Schuh H, Titov O (1999) Explanatory supplement to the section “Antenna Deformation” of the IERS Conventions (1996). In: Schuh H (ed) DGFI report nr. 71, Deutsches Geodätisches Forschungsinstitut (DGFI), Munich (Germany), pp 26–29Google Scholar
  9. Haas R, Bergstrand S, Lehner W (2013) Evaluation of GNSS monument stability. In: Altamimi Z, Collieux X (eds) Reference frames for applications in geosciences. International association of geodesy symposia, vol 138, pp 45–50. doi:10.1007/978-3-642-32998-2_8
  10. Illner I (1985) Datumsfestlegung in freien Netzen. Dissertationen, Deutsche Geodätische Kommission, Reihe C, vol 309, MünchenGoogle Scholar
  11. Kallio U, Poutanen M (2012) Can we really promise a mm-accuracy for the local ties on a Geo-VLBI antenna. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet earth. International association of geodesy symposia, vol 136. Springer, Berlin. doi:10.1007/978-3-642-20338-1_5
  12. Knickmeyer ET, Knickmeyer EH, Nitschke M (1996) Zur Auswertung kinematischer Messungen mit dem Kalman-Filter. Schriftenreihe des Deutschen Vereins für Vermessungswesen (DVW), vol 22. Stuttgart, pp 141–166Google Scholar
  13. Koch KR (1999) Parameter Estimation and hypothesis testing in linear models, 2nd edn. Springer, Heidelberg. doi:10.1007/978-3-662-03976-2
  14. Koch KR (2007) Introduction to Bayesian statistics, 2nd edn. Springer, Heidelberg. doi:10.1007/978-3-540-72726-2
  15. Kotsakis C (2012) Reference frame stability and nonlinear distortion in minimum-constrained network adjustment. J Geodesy 86:755–774. doi:10.1007/s00190-012-0555-6 CrossRefGoogle Scholar
  16. Krickel B (2004) Leistungskriterien zur Qualitätskontrolle von Robottachymetern. Dissertationen, Mitteilungen aus den Geodätischen Instituten der Rheinischen Friedrich-Wilhelms-Universität, vol 92, BonnGoogle Scholar
  17. Kupferer S (2005) Anwendung der Total-Least-Squares-Technik bei geodätischen Problemstellungen. Dissertationen, Schriftenreihe des Studiengangs Geodäsie und Geoinformatik, KarlsruheGoogle Scholar
  18. Leinen S, Becker M, Dow J, Feltens J, Sauermann K (2007) Geodetic determination of radio telescope antenna reference point and rotation axis parameters. J Surv Eng 133:41–51. doi:10.1061/(ASCE)0733-9453(2007)133:2(41) CrossRefGoogle Scholar
  19. Lenzmann L, Lenzmann E (2004) Strenge Auswertung des nichtlinearen Gauß-Helmert-Modells. Allgemeine Vermessungs-Nachrichten 2:68–73Google Scholar
  20. Lösler M (2008) Reference point determination with a new mathematical model at the 20 m VLBI radio telescope in Wettzell. J Appl Geodesy 2:233–238. doi:10.1515/JAG.2008.026 Google Scholar
  21. Lösler M (2009) New mathematical model for reference point determination of an Azimuth-elevation type radio telescope. J Surv Eng 135:131–135. doi:10.1061/(ASCE)SU.1943-5428.0000010 CrossRefGoogle Scholar
  22. Lösler M (2012) JAG3D—Ein kostenfreies Programm zur Netzausgleichung und Deformationsanalyse. In: Neitzel F (ed) tech12—Aktuelle trends der Messdatenauswertung in Kataster- und IngenieurvermessungGoogle Scholar
  23. Lösler M, Haas R (2009) The 2008 local-tie survey at the Onsala space observatory. In: Bourda G, Charlot P, Collioud A (eds) Proceedings of the EVGA—European VLBI for geodesy and astrometry, March 23.–24., Bordeaux (France), pp 97–101Google Scholar
  24. Lösler M, Eschelbach C, Schenk A, Neidhardt A (2010) Permanentüberwachung des 20 m VLBI-Radioteleskops an der Fundamentalstation in Wettzell. Zeitschrift für Geodäsie Geoinformatik Landmanagement 1:40–48Google Scholar
  25. Mazura A (2012) Erstellung eines Beobachtungsplans für das terrestrische Monitoring von Radioteleskopen. Bachelor’s thesis, University of Applied Sciences Frankfurt am Main (unpublished)Google Scholar
  26. Neitzel F (2010) Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J Geodesy 84:751–762. doi:10.1007/s00190-010-0408-0 Google Scholar
  27. Nothnagel A (2009) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geodesy 83:787–792. doi:10.1007/s00190-008-0284-z Google Scholar
  28. Pauli W (1969) Vorteile eines kippbaren Reflektors bei der elektrooptischen Streckenmessung. Vermessungstechnik 17:412–415Google Scholar
  29. Plag HP, Pearlman M (eds) (2009) Global geodetic observing system. Meeting the requirements of a global society on an changing planet in 2020. Springer, Heidelberg. doi:10.1007/978-3-642-02687-4
  30. Ray J, Altamimi Z (2005) Evaluation of co-location ties relating the VLBI and GPS reference frames. J Geodesy 79:189–195. doi:10.1007/s00190-005-0456-z CrossRefGoogle Scholar
  31. Rothacher M, Beutler G, Behrend D, Donnellan A, Hinderer J, Ma C, Noll C, Oberst J, Pearlman M, Plag H-P, Richter B, Schöne T, Tavernier G, Woodworth PL (2009) The future global geodetic observing system. In: Plag H-P, Pearlman M (eds) The global geodetic observering system. Meeting the requirements of a global society on an changing planet in 2020, Springer, Heidelberg, pp 237–272. doi:10.1007/978-3-642-02687-4_9
  32. Rummel R, Rothacher M, Beutler G (2005) Integrated global geodetic observing system (IGGOS)—science rationale. J Geodyn 40:357–362. doi:10.1016/j.jog.2005.06.003 CrossRefGoogle Scholar
  33. Rüeger JM (1990) Electronic distance measurement—an introduction, 3rd edn. Springer, HeidelbergGoogle Scholar
  34. Sarti P, Sillard P, Vittuari L (2004) Surveying co-located space-geodetic instruments for ITRF computation. J Geodesy 78:210–222. doi:10.1007/s00190-004-0387-0 CrossRefGoogle Scholar
  35. Schmeing SD, Behrend DJ, Gipson J, Nothnagel A (2010) Proof-of-concept studies for a local tie monitoring system. In: Behrend D, Baver KD (eds) VLBI2010: from vision to reality, IVS 2010 general meeting proceedings, NASA/CP-2010-215864, pp 360–364Google Scholar
  36. Wresnik J, Haas R, Böhm J, Schuh H (2007) Modeling thermal deformation of VLBI antennas with a new temperature model. J Geodesy 81:423–431. doi:10.1007/s00190-006-0120-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Lösler
    • 1
  • Rüdiger Haas
    • 2
  • Cornelia Eschelbach
    • 3
  1. 1.Department G1, Fundamental Matters and Global Reference SystemsFederal Agency for Cartography and GeodesyFrankfurt am MainGermany
  2. 2.Department of Earth and Space SciencesChalmers University of TechnologyOnsalaSweden
  3. 3.Faculty 1: Architecture, Civil Engineering, GeomaticUniversity of Applied Sciences FrankfurtFrankfurt am MainGermany

Personalised recommendations