Advertisement

Journal of Geodesy

, Volume 87, Issue 1, pp 29–42 | Cite as

Analysis of the repeated absolute gravity measurements in the Czech Republic, Slovakia and Hungary from the period 1991–2010 considering instrumental and hydrological effects

  • Vojtech PálinkášEmail author
  • Martin Lederer
  • Jakub Kostelecký
  • Jaroslav Šimek
  • Marcel Mojzeš
  • Dušan Ferianc
  • Géza Csapó
Original Article

Abstract

Since August 2001, the absolute gravimeter FG5#215 has been used for the modernization of the national gravity networks of the Czech Republic, Slovakia, and Hungary. Altogether 43 absolute stations were measured, some of them repeatedly. Absolute gravity at 29 stations had already been determined in 1990s by other absolute gravimeters (FG5 or JILAg). Differences of repeated measurements at most of the stations show an unexpected decrease of gravity (up to 22 μGal) over the whole region. An uncertainty assessment of absolute measurements with a special emphasis put on hydrological effects shows a statistical significance of the detected gravity variations at many stations. In this manuscript, three possible reasons of such findings are discussed: (1) a regional geodynamic activity, (2) systematic instrumental errors (offsets), (3) hydrological effects. The analysis and statistics of the gravity differences in context of international comparisons of absolute gravimeters show offsets up to 9μGal related to data of the JILAg-6 and FG5#107 gravimeters. Data collected in this study demonstrate that considering instrumental and hydrological effects on gravity are crucial for a correct interpretation of repeated absolute gravity measurements.

Keywords

Gravity acceleration Absolute gravimeter Offset Uncertainty Hydrological effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112. doi: 10.1029/2007JB004949
  2. Boy J, Hinderer J (2006) Study of the seasonal gravity signal in superconducting gravimeter data. J Geodyn 41: 227–233. doi: 10.1016/j.jog.2005.08.035 CrossRefGoogle Scholar
  3. Bruyninx C (2004) The EUREF Permanent Network: a multi-disciplinary network serving surveyors as well as scientists. GeoInformatics 7: 32–35Google Scholar
  4. Creutzfeldt B, Güntner A, Wziontek H, Merz B (2010) Reducing local hydrology from high-precision gravity measurements: a lysimeter-based approach. Geophys J Int 183: 178–187CrossRefGoogle Scholar
  5. de Viron O, Van Camp M, Francis O (2011) Revisiting absolute gravimeter intercomparisons. Metrologia 48(5): 290–298CrossRefGoogle Scholar
  6. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270: 105–134CrossRefGoogle Scholar
  7. Francis O, van Dam T, Amalvict M, Andrade de Sousa M, Bilker M, Billson R, D’Agostino G, Desogus S, Falk R, Germak A, Gitlein O, Jonhson D, Klopping F, Kostelecky J, Luck B, Mäkinen J, McLaughlin D, Nunez E, Origlia C, Palinkas V, Richard P, Rodriguez E, Ruess D, Schmerge D, Thies S, Timmen L, Van Camp M, van Westrum D, Wilmes H (2004) Results of the International Comparison of Absolute Gravimeters in Walferdange (Luxembourg) of November 2003. In: IAG symposia, gravity, geoid and space missions, vol 129, pp 272–275Google Scholar
  8. Francis O, van Dam T, Germak A, Amalvict M, Bayer R, Bilker-Koivula M, Calvo M, D’Agostino GC, Dell’Acqua T, Engfeldt A, Faccia R, Falk R, Gitlein O, Fernandez, Gjevestad J, Hinderer J, Jones, Kostelecky J, Le Moigne N, Luck B, Mäkinen J, Mclaughlin D, Olszak T, Olsson P, Pachuta A, Palinkas V, Pettersen B, Pujol R, Prutkin I, Quagliotti D, Reudink R, Rothleitner C, Ruess D, Shen C, Smith V, Svitlov S, Timmen L, Ulrich C, Van Camp M, Walo J, Wang L, Wilmes H, Xing L (2010) Results of the European Comparison of Absolute Gravimeters in Walferdange (Luxembourg) of November 2007. In: IAG symposia, vol 135, pp 31–36Google Scholar
  9. Hinderer J, de Linage C, Boy JP, Gegout P, Masson F, Rogister Y, Amalvict M, Pfeffer J, Littel F, Luck B, Bayer R, Champollion C, Collard P, Le Moigne N, Diament M, Deroussi S, de Viron O, Biancale R, Lemoine JM, Bonvalot S, Gabalda G, Bock O, Genthon P, Boucher M, Favreau G, Séguis L, Delclaux F, Cappelaere B, Oi M, Descloitres M, Galle S, Laurent JP, Legchenko A, Bouin MN (2009) The GHYRAF (Gravity and Hydrology in Africa) experiment: description and first results. J Geodyn 48(3-5): 172–181CrossRefGoogle Scholar
  10. JCGM (2008) JCGM 100—GUM 1995 with minor corrections, evaluation of measurement data-guide to the expression of uncertainty in measurement. http://www.iso.org/sites/JCGM/GUM-JCGM100.htm
  11. Jiang Z, Francis O, Vitushkin L, Palinkas V, Germak A, Becker M, D’Agostino G, Amalvict M, Bayer R, Bilker-Koivula M, Desogus S, Faller J, Falk R, Hinderer J, Gagnon C, Jakob T, Kalish E, Kostelecky J, Lee C, Liard J, Lokshyn Y, Luck B, Mäkinen J, Mizushima S, Le Moigne N, Origlia C, Pujol E, Richard P, Robertsson L, Ruess D, Schmerge D, Stus Y, Svitlov S, Thies S, Ullrich C, Van Camp M, Vitushkin A, Ji W, Wilmes H (2011) Final report on the seventh international comparison of absolute gravimeters (ICAG 2005). Metrologia 48: 246–260CrossRefGoogle Scholar
  12. Lambert A, Courtier N, Sasagawa G, Klopping F, Winester D, James T, Liard J (2001) New constraints on Laurentide postglacial rebound from absolute gravity measurements. Geophys Res Lett 28(10): 2109–2112CrossRefGoogle Scholar
  13. Lambert A, Courtier N, James T (2006) Long-term monitoring by absolute gravimetry: tides to postglacial rebound. J Geodyn 41(1-3): 307–317CrossRefGoogle Scholar
  14. Lampitelli C, Francis O (2010) Hydrological effects on gravity and correlations between gravitational variations and level of the Alzette River at the station of Walferdange, Luxembourg. J Geodyn 49(1): 31–38CrossRefGoogle Scholar
  15. Liard J, Henton J, Gagnon C, Lambert A, Courtier N (2003) Comparison of absolute gravimeters using simultaneous observations. Cahiers du Centre Europeén de Géodynamique et de Séismologie 22: 57–63Google Scholar
  16. Longuevergne L, Boy J, Florsch N, Viville D, Ferhat G, Ulrich P, Luck B, Hinderer J (2009) Local and global hydrological contributions to gravity variations observed in Strasbourg. J Geodyn 48(3-5): 189–194CrossRefGoogle Scholar
  17. Marson I, Faller J, Cerutti G, Maria PD, Chartier JM, Robertsson L, Vitushkin L, Friederich J, Krauterbluth K, Stizza D, Liard J, Gagnon C, Lothhammer A, Wilmes H, Makinen J, Murakami M, Rehren F, Schnull M, Ruess D, Sasagawa G (1995) Fourth international comparison of absolute gravimeters. Metrologia 32(3): 137–144CrossRefGoogle Scholar
  18. McCarthy D, Petit G et al (2004) IERS conventions (2003). IERS technical note 32. Verlag des Bundesamtes für Kartographie und Geodäsie Frankfurt am Main, US Naval Observatory and Bureau International des Poids et Mesures, 127 pGoogle Scholar
  19. Merriam J (1992) Atmospheric pressure and gravity. Geophys J Int 109: 488–500CrossRefGoogle Scholar
  20. Meurers B, Van Camp M, Petermans T (2007) Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach stations and application to Earth tide analysis. J Geod 81(11): 703–712. doi: 10.1029/2009JB006615 CrossRefGoogle Scholar
  21. Naujoks M, Kroner C, Weise A, Jahr T, Krause P, Eisner S (2009) Evaluating small-scale hydrological modelling by time-dependent gravity observations and a gravimetric 3D model. Geophys J Int 182: 233–249Google Scholar
  22. Niebauer T (1989) The effective measurement height of free-fall absolute gravimeters. Metrologia 26(2): 115–118CrossRefGoogle Scholar
  23. Niebauer T, Sasagawa G, Faller J, Hilt R, Klopping F (1995) A new generation of absolute gravimeters. Metrologia 32(3): 159–180CrossRefGoogle Scholar
  24. Pálinkáš V (2007) Fringe signal effect on the absolute gravimeter FG5 No. 215. In: Proceeding of the 1st international symposium of the international gravity field service, Harita Dergisi, 73/18, pp 398–400Google Scholar
  25. Pálinkáš V, Kostelecký J, Šimek J (2010) A feasibility of absolute gravity measurements in geodynamics. Acta Geodyn Geomater 7: 61–69Google Scholar
  26. Ramillien G, Famiglietti J, Wahr J (2008) Detection of continental hydrology and glaciology signals from GRACE. A review. Surv Geophys 29: 361–374. doi: 10.1007/s10712-008-9048-9 CrossRefGoogle Scholar
  27. Robertson D (1996) Treating absolute gravity data as a spacecraft tracking problem. Metrologia 33(6): 545–548CrossRefGoogle Scholar
  28. Robertsson L (2007) On the diffraction correction in absolute gravimetry. Metrologia 44: 35–39CrossRefGoogle Scholar
  29. Robertsson L, Francis O, van Dam T, Faller J, Ruess D, Delinte JM, Vitushkin L, Liard J, Gagnon C, Guang GY, Lun HD, Yuan FY, Yi XJ, Jeffries G, Hopewell H, Edge R, Robinson I, Kibble B, Makinen J, Hinderer J, Amalvict M, Luck B, Wilmes H, Rehren F, Schmidt K, Schnull M, Cerutti G, Germak A, Zabek Z, Pachuta A, Arnautov G, Kalish E, Stus Y, Stizza D, Friederich J, Chartier JM, Marson I (2001) International comparison: results from the fifth international comparison of absolute gravimeters, ICAG97. Metrologia 38(1): 71–78CrossRefGoogle Scholar
  30. Rosat S, Boy JP, Ferhat G, Hinderer J, Amalvict M, Gegout P, Luck B (2009) Analysis of a 10-year (1997–2007) record of time- varying gravity in Strasbourg using absolute and superconducting gravimeters: new results on the calibration and comparison with GPS height changes and hydrology. J Geodyn 48(3-5): 360–365CrossRefGoogle Scholar
  31. Rothleitner C, Francis O (2010) On the influence of the rotation of a corner cube reflector in absolute gravimetry. Metrologia 47(5): 567–574CrossRefGoogle Scholar
  32. Steffen H, Gitlein O, Denker H, Müller J, Timmen L (2009) Present rate of uplift in Fennoscandia from GRACE and absolute gravimetry. Tectonophysics 474: 69–77CrossRefGoogle Scholar
  33. Timmen L (2003) Precise definition of the effective measurement height of free-fall absolute gravimeters. Metrologia 40: 62–65CrossRefGoogle Scholar
  34. Timmen L, Gitlein O, Müller J, Strykowski G, Forsberg R (2008) Absolute gravimetry with the Hannover meters JILAg-3 and FG5-220, and their deployment in a Danish-German cooperation. Zeitschrift für Geodäsie, Geoinformation und Landmanagement 133: 149–163Google Scholar
  35. Timmen L, Gitlein O, Klemann V, Wolf D (2011) Observing gravity change in the Fennoscandian uplift area with the Hanover absolute gravimeter. Pure Appl Geophys. doi: 10.1007/s00024-011-0397-9
  36. Van Camp M, Williams SDP, Francis O (2005) Uncertainty of absolute gravity measurements. J Geophys Res 110: b05406. doi: 10.1029/2004JB003497 CrossRefGoogle Scholar
  37. Van Camp M, Vanclooster M, Crommen O, Petermans T, Verbeeck K, Meurers B, van Dam T, Dassargues A (2006) Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. J Geophys Res 111: b10403. doi: 10.1029/2006JB004405 CrossRefGoogle Scholar
  38. Van Camp M, Métivier L, de Viron O, Williams BMS (2010) Characterizing long-time scale hydrological effects on gravity for improved distinction of tectonic signals. J Geophys Res 115: b07407. doi: 10.1029/2009JB006615 CrossRefGoogle Scholar
  39. Van Camp M, de Viron O, Scherneck H, Hinzen K, Williams S, Lecocq T, Quinif Y, Camelbeeck T (2011) Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in Western Europe. J Geophys Res 116. doi: 10.1029/2010JB008174
  40. van Westrum D, Niebauer TM (2003) The diffraction correction for absolute gravimeters. Metrologia 40(5): 258–263CrossRefGoogle Scholar
  41. Virtanen H (2001) Hydrological studies at the Gravity Station Metasahoviin Finland. J Geodetic Soc Japan 47: 328–333Google Scholar
  42. Vitushkin L, Becker M, Jiang Z, Francis O, van Dam T, Faller J, Chartier JM, Amalvict M, Bonvalot S, Debeglia S, Desogus S, Diament M, Dupont F, Falk R, Gabalda G, Gagnon C, Gattacceca T, Germak A, Hinderer J, Jamet O, Jeffries G, Käter R, Kopaev A, Liard J, Lindau A, Longuevergne L, Luck B, Maderal N, Mäkinen J, Meurers B, Mizushima S, Mrlina J, Newell D, Origlia C, Pujol E, Reinhold A, Richard P, Robinson I, Ruess D, Thies S, Van Camp M, Van Ruymbeke M, de Villalta Compagni M, Williams S (2002) Results of the sixth international comparison of absolute gravimeters ICAG-2001. Metrologia 39(5): 407–424CrossRefGoogle Scholar
  43. Vyskočil P (1994) Catalogue of the annual velocities of vertical movements at the territory of CEI member countries. Bull ICRCM 41:31–46Google Scholar
  44. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12): 30,205–30,229CrossRefGoogle Scholar
  45. Weise A, Kroner C, Abe M, Ihde J, Jentzsch G, Naujoks M, Wilmes H, Wziontek H (2009) Gravity field variations from superconducting gravimeters for GRACE validation. J Geodyn 48(3–5): 325–330CrossRefGoogle Scholar
  46. Williams S, Baker T, Jeffries G (2001) Absolute gravity measurements at uk tide gauges. Geophys Res Lett 28(12): 2317–2320CrossRefGoogle Scholar
  47. Wziontek H, Falk R, Wilmes H, Wolf P (2008) Precise gravity time series and instrumental properties from combination of superconducting and absolute gravity measurements. In: Sideris M (ed) Observing our changing earth. International Association of Geodesy symposia, vol 133. Springer, Berlin, pp 301–306Google Scholar
  48. Zerbini S, Richter B, Negusini M, Romagnoli C, Simon D, Domenichini F, Schwahn W (2001) Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth Planet Sci Lett 192(3): 267–279CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Vojtech Pálinkáš
    • 1
    Email author
  • Martin Lederer
    • 2
  • Jakub Kostelecký
    • 1
  • Jaroslav Šimek
    • 1
  • Marcel Mojzeš
    • 3
  • Dušan Ferianc
    • 4
  • Géza Csapó
    • 5
  1. 1.Geodetic Observatory PecnýResearch Institute of Geodesy, Topography and CartographyOndřejovCzech Republic
  2. 2.Geodetic Control Section, Special Works DepartmentLand Survey OfficePraha 8Czech Republic
  3. 3.Faculty of Civil Engineering, Slovak University of Technology in BratislavaBratislavaSlovakia
  4. 4.Geodetic and Cartographic Institute in BratislavaBratislavaSlovakia
  5. 5.Eötvös Lorand Geophysical Institute of HungaryBudapestHungary

Personalised recommendations