Skip to main content
Log in

Intersatellite laser ranging instrument for the GRACE follow-on mission

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The Gravity Recovery and Climate Experiment (GRACE) has demonstrated that low–low satellite-to-satellite tracking enables monitoring the time variations of the Earth’s gravity field on a global scale, in particular those caused by mass-transport within the hydrosphere. Due to the importance of long-term continued monitoring of the variations of the Earth’s gravitational field and the limited lifetime of GRACE, a follow-on mission is currently planned to be launched in 2017. In order to minimise risk and the time to launch, the follow-on mission will be basically a rebuild of GRACE with microwave ranging as the primary instrument for measuring changes of the intersatellite distance. Laser interferometry has been proposed as a method to achieve improved ranging precision for future GRACE-like missions and is therefore foreseen to be included as demonstrator experiment in the follow-on mission now under development. This paper presents the top-level architecture of an interferometric laser ranging system designed to demonstrate the technology which can also operate in parallel with the microwave ranging system of the GRACE follow-on mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alnis J, Matveev A, Kolachevsky N, Udem T, Hänsch TW (2008) Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities. Phys. Rev. A 77: 053809

    Article  Google Scholar 

  • Anderson DZ (1984) Alignment of resonant optical cavities. Appl Opt 23(17): 2944

    Article  Google Scholar 

  • Bender PL, Wiese DN, Nerem RS (2008) A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. In: Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies

  • Bertiger W, Bar-Sever Y, Desai S, Dunn C, Haines B, Kruizinga G, Kuang D, Nandi S, Romans L, Watkins M, Wu S, Bettadpur S (2002) GRACE: Millimeters and Microns in Orbit. In: Proc ION GPS 2002

  • Black ED (2001) An introduction to Pound–Drever–Hall laser frequency stabilization. Am J Phys 69(1): 79–87

    Article  Google Scholar 

  • Danzmann K, Rúdiger A (2003) LISA technology–concept, status, prospects. Class Quantum Gravity 20: S1

    Article  Google Scholar 

  • Danzmann K, the LISA Science Team (2003) LISA: An ESA cornerstone mission for the detection and observation of gravitational waves. Adv Space Res 32(7): 1233–1242

    Google Scholar 

  • Drever RWP, Hall JL, Kowalski FV, Hough J, Ford GM, Munley AJ, Ward H (1983) Laser phase and frequency stabilization using an optical resonator. Appl Phys B 31(2): 97–105

    Article  Google Scholar 

  • Dunn C, Bertiger W, Bar-Sever Y, Desai S, Haines B, Kuang D, Franklin G, Harris I, Kruizinga G, Meehan T, Nandi S, Nguyen D, Rogstad T, Thomas JB, Tien J, Romans L, Watkins M, Wu SC, Bettadpur S, Kim J (2003) Instrument of Grace:GPS augments gravity measurements. GPS World 14: 16–28

    Google Scholar 

  • Folkner WM, de Vine G, Klipstein WM, McKenzie K, Shaddock D, Spero R, Thompson R, Wuchenich D, Yu N, Stephens M, Leitch J, Davis M, de Cino J, Pace C, Pierce R (2010) Laser frequency stabilization for GRACE-II. In: Proceedings of the 2010 Earth Science Technology Forum

  • Folkner WM, de Vine G, Klipstein WM, McKenzie K, Spero R, Thompson R, Yu N, Stephens M, Leitch J, Pierce R, Lam TTY, Shaddock DA (2011) Laser frequency stabilization for GRACE-2 In: Proceedings of the 2011 Earth Science Technology Forum

  • Heinzel G, Rúdiger A, Schilling R, Strain K, Winkler W, Mizuno J, Danzmann K (1999) Automatic beam alignment in the Garching 30-m prototype of a laser-interferometric gravitational wave detector. Opt Commun 160: 321–334

    Article  Google Scholar 

  • Heinzel G, Rúdiger A, Schilling R, Strain K, Winkler W, Mizuno J, Danzmann K (1999) Corrigendum to “Automatic beam alignment in the Garching 30-m prototype of a laser-interferometric gravitational wave detector”[Opt. Commun. 160 (1999) 321–334]. Opt Commun 164: 161

    Article  Google Scholar 

  • Heinzel G, Wand V, García A, Jennrich O, Braxmaier C, Robertson D, Middleton K, Hoyland D, Rúdiger A, Schilling R, Johann U, Danzmann K (2004) The LTP interferometer and phasemeter. Class Quantum Gravity 21: S581–S587

    Article  Google Scholar 

  • Heinzel G, Braxmaier C, Danzmann K, Gath P, Hough J, Jennrich O, Johann U, Rúdiger A, Sallusti M, Schulte H (2006) LISA interferometry: recent developments. Class Quantum Gravity 23: S119

    Article  Google Scholar 

  • Herman J, Presti D, Codazzi A, Belle C (2004) Attitude Control for GRACE: The first low-flying satellite formation. In: Proceedings of the 18th international symposium on space flight dynamics

  • Horwath M, Lemoine JM, Biancale R, Bourgogne S (2011) Improved GRACE science results after adjustment of geometric biases in the Level-1B K-band ranging data. J Geod 85: 23–38

    Article  Google Scholar 

  • Jeganathan M, Dubovitsky S (2000) Demonstration of nm-level active metrology for long range interferometric displacement measurements. Proc SPIE 4006: 838–846

    Article  Google Scholar 

  • Kim J, Lee SW (2009) Flight performance analysis of GRACE K-band ranging instrument with simulation data. Acta Astronautica 65: 1571–1581

    Article  Google Scholar 

  • Knudsen P, Andersen O (2002) Correcting GRACE gravity fields for ocean tide effects. Geophys Res Lett 29: 1178

    Article  Google Scholar 

  • Krieger G, Fiedler H, Mittermayer J, Papathanassiou K, Moreira A (2003) Analysis of multistatic configurations for spaceborne SAR interferometry. IEE Proc Radar Sonar Navig 150: 87

    Article  Google Scholar 

  • Loomis BD, Nerem RS, Luthcke SB (2011) Simulation study of a follow-on gravity mission to grace. J Geodesy 1–17. http://dx.doi.org/10.1007/s00190-011-0521-8, doi:10.1007/s00190-011-0521-8

  • Ludlow AD, Huang X, Notcutt M, Zanon-Willette T, Foreman SM, Boyd MM, Blatt S, Ye J (2007) Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15. Opt Lett 32(6): 641

    Article  Google Scholar 

  • McElroy JH, McAvoy N, Johnson EH, Degnan JJ, Goodwin FE, Henderson DM, Nussmeier TA, Stokes LS, Peyton BJ, Flattau T (1977) CO2 Laser communication systems for near-earth space applications. Proc IEEE 65(2): 221

    Article  Google Scholar 

  • Morrison E, Meers BJ, Robertson DI, Ward H (1994) Automatic alignment of optical interferometers. Appl Opt 33(22): 5041–5049

    Article  Google Scholar 

  • Morrison E, Meers BJ, Robertson DI, Ward H (1994) Experimental demonstration of an automatic alignment system for optical interferometers. Appl Opt 33(22): 5037–5040

    Article  Google Scholar 

  • Pierce R, Leitch J, Stephens M, Bender P, Nerem R (2008) Intersatellite range monitoring using optical interferometry. Appl Opt 47: 5007–5018

    Article  Google Scholar 

  • Schmidt R, Flechtner F, Meyer U, Neumayer KH, Dahle C, Koenig R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29(4–5): 319–334

    Article  Google Scholar 

  • Seo KW, Wilson CR, Han SC, Waliser DE (2008) Gravity Recovery and Climate Experiment (GRACE) alias error from ocean tides. J Geophys Res 113: B03405

    Article  Google Scholar 

  • Shaddock D, Ware B, Halverson PG, Spero RE, Klipstein B (2006) Overview of the LISA Phasemeter. AIP Conf Proc 873: 654–660

    Article  Google Scholar 

  • Shaddock DA (2008) Space-based gravitational wave detection with LISA. Class Quantum Gravity 25: 114012

    Article  Google Scholar 

  • Smutny B, Lange R, Kämpfner H, Dallmann D, Mühlnikel G, Reinhardt M, Saucke K, Sterr U, Wandernoth B, Czichy R (2008) In-orbit verification of optical inter-satellite communication links based on homodyne BPSK. Proc SPIE 6877: 687702

    Article  Google Scholar 

  • Smutny B, Kaempfner H, Muehlnikel G, Sterr U, Wandernoth B, Heine F, Hildebrand U, Dallmann D, Reinhadrt M, Freier A, Lange R, Boehmer K, Feldhaus T, Mueller J, Weichhert A, Greulich P, Seel S, Meyer R, Czichy R (2009) 5.6 Gbps optical intersatellite communication link. Proc SPIE 7199: 719906

    Article  Google Scholar 

  • Sneeuw N, Flury J, Rummel R (2005) Science requirements on future missions and simulated mission scenarios. Earth Moon Planets 94: 113–142

    Article  Google Scholar 

  • Tapley BD, Chambers DP, Bettadpur S, Ries JC (2003) Large scale ocean circulation from the GRACE GGM01 Geoid. Geophys Res Lett 30(22): 2613

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Sci 305: 503–505

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004b) The Gravity Recovery and Climate Experiment: mission overview and early results. Geophys Res Lett 31(9): L09607

    Article  Google Scholar 

  • Thomas JB (1999) An Analysis of Gravity-Field Estimation Based on Intersatellite Dual-1-Way Biased Ranging, JPL Publication, vol 98-15. Jet Propulsion Laboratory, Pasadena

    Google Scholar 

  • Thompson PF, Bettadpur SV, Tapley BD (2004) Impact of short period, non-tidal, temporal mass variability on GRACE gravity estimates. Geophys Res Lett 31: L06619

    Article  Google Scholar 

  • Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36: L18401

    Article  Google Scholar 

  • Tolker-Nielsen T, Oppenhaeuser G (2002) In Orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX. Proc SPIE 4635: 1

    Article  Google Scholar 

  • Touboul P, Willemenot E, Foulon B, Josselin V (1999) Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution. Boll Geof Teor Appl 40: 321–327

    Google Scholar 

  • Tröbs M (2005) Laser development and stabilization for the spaceborne interferometric gravitational wave detector LISA. Ph.D. thesis, University of Hannover

  • van den Broeke M, Bamber J, Ettema J, Rignot E, Schrama E, van de Berg WJ, van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning Recent Greenland Mass Loss. Science 326: 984–986

    Article  Google Scholar 

  • Visser PNAM, Sneeuw N, Reubelt T, Losch M, van Dam T (2010) Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. Geophys J Int 181: 789–805

    Google Scholar 

  • Ware B, Folkner WM, Shaddock D, Spero R, Halverson P, Harris I, Rogstad T (2006) Phase Measurement System for Inter-Spacecraft Laser Metrology. In:Proceedings of the 2006 Earth Science Technology Conference

  • Wiese DN, Folkner WM, Nerem RS (2009) Alternative mission architectures for a gravity recovery satellite mission. J Geod 83: 569–581

    Article  Google Scholar 

  • Wouters B, Chambers D, Schrama EJO (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35:L20501

    Google Scholar 

  • Zenner L, Gruber T, Jäggi A, Beutler G (2010) Propagation of atmospheric model errors to gravity potential harmonics-impact on GRACE de-aliasing. Geophys J Int 182: 797–807

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Sheard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheard, B.S., Heinzel, G., Danzmann, K. et al. Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geod 86, 1083–1095 (2012). https://doi.org/10.1007/s00190-012-0566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-012-0566-3

Keywords

Navigation