Skip to main content
Log in

3D coseismic Displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Differential interferometric synthetic aperture radar (D-InSAR) measures ground deformation only along the line-of-sight (LOS) of the radar, which limits the capability of D-InSAR in investigating the surface damages and the focus mechanisms of earthquakes. We do a three-dimensional (3D) decomposition of the coseismic displacement of the Darfield, New Zealand earthquake that occurred on 3 September 2010 by exploiting the Multi-Aperture InSAR (MAI) and D-InSAR measurements from both ascending and descending L-band PALSAR data. Due to the dispersive nature of the ionosphere and the slight Doppler shift between the forward- and backward-looking interferograms, the ionospheric effects can be more serious in MAI measurements than in D-InSAR. We propose mitigating the ionospheric effects in the MAI processing with the directional filtering and interpolation procedure that has been applied in Offset-tracking. The rupture revealed by the 3D surface displacement fits closely to the Greendale fault, which is believed to be responsible for the earthquake. The horizontal ground motions, mostly eastwards in the hanging wall and westwards in the footwall, reached up to 2.5 m and are anti-symmetric with respect to the Greendale fault. Up to 2.5 m subsidence occurred in the hanging wall, while uplift is found in the footwall with an extreme case of 1.6 m in the far left of the fault. This makes us conclude that the Greendale fault is a normal and dextral strike-slip. It is seen that the MAI measurements are very helpful in the derivation of 3D coseismic displacement fields as it provides more accurate displacement estimation in the north–south direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bamler R, Eineder M (2005) Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and Delta-k SAR systems. IEEE Geosci Remote Lett 2(2): 151–155

    Article  Google Scholar 

  • Becher NBD, Zebker HA (2006) Measuring two-dimensional movements using a single InSAR pair. Geophys Res Lett 33: L16311. doi:10.1029/2006GL026883

    Article  Google Scholar 

  • Cubrinovski M, Green R, Allen J, Ashford S, Bowman E, Bradley B, Cox B, Hutchinson T, Kavazanjian E, Orense R, Pender M, Quigley M, Wilson T, Wotherspoon L (2010) Geotechnical reconnaissance of the 2010 Darfield (New Zealand) earthquake. Bull New Zealand Soc Earthquake Eng 43(4): 243–320

    Google Scholar 

  • Ding XL, Liu GX, Li ZW, Li ZL, Chen YQ (2004) Ground subsidence monitoring in Hong Kong with satellite SAR interferometry. Photogramm Eng Rem S. 70(10): 1151–1156

    Google Scholar 

  • Erten E, Reigber A, Hellwich O (2010) Generation of three-dimensional deformation maps from InSAR data using spectral diversity techniques. ISPRS J Photogramm 65: 388–394

    Article  Google Scholar 

  • Fialko Y, Simons M, Agnew D (2001) The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw 7.1 Hector Mine earthquake, California, from space geodetic observations. Geophys Res Lett 28(16): 3063–3066

    Article  Google Scholar 

  • Fialko Y, Sandwell D, Simons M, Rosen P (2005) Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature 435(19). doi:10.1038/nature03425

  • Funning GJ, Parsons B, Wright TJ, Jackson JA, Fielding EJ (2005) Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. J Geophys Res 110(B09406). doi:10.1029/2004JB003338

  • Ge LL, Chang HC, Rizos C (2007) Mine subsidence monitoring using multi-source satellite SAR images. Photogramm Eng Rem S 73(3): 259–266

    Google Scholar 

  • Goldstein R, Engelhard R, Kamb B, Frolich RM (1993) Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262(10): 1525–1530

    Article  Google Scholar 

  • Gourmelen N, Kin SW, Shepherd A, Park JW, Sundal AV, Bjornsson H, Palsson F (2011) Ice velocity determined using conventional and multiple-aperture InSAR. Earth Planet Sci Lett 307: 156–160

    Article  Google Scholar 

  • Hanssen R (2001) Radar interferometry: data interpretation and error analysis. Kluwer Academic Publication, The Netherland

    Google Scholar 

  • Hobiger T, Kinoshita Y, Shimizu S, Ichikawa R, Furuya M, Kondo T, Koyama Y (2010) On the importance of accurately ray-traced troposphere corrections for Interferometric SAR data. J Geod 84: 537–546

    Article  Google Scholar 

  • Hold C, Beavan J, Fry B, Reyners M, Ristau J, Dissen RV, Villamor P, Quigley M (2011) Preliminary source model of the Mw 7.1 Darfield earthquake from geological, geodetic and seismic data. In: Proceedings of the Ninth Pacific Conference on Earthquake Engineering, Auckland, New Zealand, pp 14–16

  • Hu J, Li ZW, Ding XL, Zhu JJ (2008) Two-dimensional co-seismic surface displacements field of the Chi-Chi earthquake inferred from SAR image matching. Sensors 8: 6484–6495

    Article  Google Scholar 

  • Hu J, Li ZW, Zhu JJ, Ding XL, Ren XC (2010) Inferring three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits. Sci China Earth Sci 53: 550–560. doi:10.1007/s11430-010-0023-1

    Article  Google Scholar 

  • Janssen V, Ge LL, Rizos C (2004) Tropospheric correction to SAR interferometry from GPS observations. GPS Solut 8(3): 140–151. doi:10.1007/s10291-004-0099-1

    Article  Google Scholar 

  • Jongens R, Forsyth J, Strong D (2011) Immediate report: 22 February 2011 Christchurch earthquake response. GNS Science Immediate Report 23

  • Jung HS, Won JS, Kim SW (2009) An improvement of the performance of multiple-aperture SAR interferometry (MAI). IEEE T Geosci Remote 47(8): 2859–2869

    Article  Google Scholar 

  • Jung HS, Lu Z, Won JS, Poland MP, Miklius A (2011) Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: application to the June 2007 eruption of Kilauea Volcano, Hawaii. IEEE Geosci Remote Lett 8(1): 34–38

    Article  Google Scholar 

  • Li ZW, Ding XL, Zheng DW, Huang C (2008) Least squares based filter for remote sensing image noise reduction. IEEE T Geosci Remote 46(7): 2044–2049

    Article  Google Scholar 

  • Li ZW, Ding XL, Huang C, Zou ZR, Chen YL (2007) Atmospheric effects on repeat-pass InSAR measurements over Shanghai region. J Atmos Solar-Terres Phys 69: 1344–1356

    Article  Google Scholar 

  • Liu GX, Li J, Xu Z, Wu JC, Chen Q, Zhang HX, Zhang R, Jia HG, Luo XJ (2010) Surface deformation associated with the 2008 Ms8. 0 Wenchuan earthquake from ALOS L-band SAR interferometry. Int J Appl Earth Obs 12: 496–505

    Article  Google Scholar 

  • Lu Z, Masterlark T, Dzurisin D, Rykhus R, Wicks Jr C (2003) Magma supply dynamics at Westdahl volcano, Alaska, modeled from satellite radar interferometry. J Geophys Res 108(B7). doi:10.1029/2002JB002311

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364: 138–142

    Article  Google Scholar 

  • Manzo M, Ricciardi GP, Casu F, Ventura G, Zeni G, Borgstrom S, Berardino P, Del Gaudio C, Lanari R (2006) Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry. J Volcanol Geoth Res 151: 399–416

    Article  Google Scholar 

  • Michel R, Avouac JP (1999) Measuring ground displacements from SAR amplitude images: application to the Landers earthquake. Geophys Res Lett 26(7): 875–878

    Article  Google Scholar 

  • Raucoules D, Michele M (2010) Assessing ionospheric influence on L-band SAR data: implications on coseismic displacement measurements of the 2008 Sichuan earthquake. IEEE Geosci Remote Lett 7(2): 286–290

    Article  Google Scholar 

  • Rocca F (2003) 3D motion recovery from multi-angle and/or left right interferometry. In: Proceedings of the third International Workshop on ERS SAR

  • Sandwell DT, Myer D, Mellors R, Shimada M, Brooks B, Foster J (2008) Accuracy and resolution of ALOS interferometry: vector deformation maps of the Father’s Day intrusion at Kilauea. IEEE T Geosci Remote 46(11): 3624–3634

    Article  Google Scholar 

  • Scheiber R, Moreira A (2000) Coregistration of interferometric SAR images using spectral diversity. IEEE T Geosci Remote 38(5): 2179–2191

    Article  Google Scholar 

  • Wegmüller U, Werner C, Strozzi T, Wiesmann A (2006) Ionospheric electron concentration effects on SAR and INSAR. In: Proceedings of international geoscience and remote sensing symposium, Denver, USA, vol 31, pp 3714–3717

  • Wegmüller U, Werner C, Santoro M, Strozzi T, Wiesmann (2009) ERS-ENVISAT TanDEM data over sea and shelf ice. Proceedings of fringe 2009 Workshop, Frascati, Italy.

  • Werner C, Wegmüller U, Strozzi T, Wiesmann A (2005) Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images. In: Proceedings of international geoscience and remote sensing symposium, Seoul, Korea, pp 4803–4805

  • Wright TJ, Parsons BE, Lu Z (2004) Toward mapping surface deformation in three dimensions using InSAR. Geophys Res Lett 31(1). doi:10.1029/2003gl018827

  • Zebker HA, Villasenor J (1992) Decorrelation in interferometric radar echoes. IEEE T Geosci Remote 30(5): 950–959

    Article  Google Scholar 

  • Zhao JX, Beavan J, An XW, Yang XD, Song TS (2011) A procedure for interactively processing digital acceleration records to extract permanent displacement and a comparison with GPS data from the 2010 Darfield earthquake. In: Proceedings of the ninth Pacific conference on earthquake engineering, Auckland, New Zealand, pp 14–16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. W. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Li, Z.W., Ding, X.L. et al. 3D coseismic Displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements. J Geod 86, 1029–1041 (2012). https://doi.org/10.1007/s00190-012-0563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-012-0563-6

Keywords

Navigation