Skip to main content
Log in

Estimation of the zero-height geopotential level W LVD o in a local vertical datum from inversion of co-located GPS, leveling and geoid heights: a case study in the Hellenic islands

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The estimation of the zero-height geopotential level of a local vertical datum (LVD) is a key task towards the connection of isolated physical height frames and their unification into a common vertical reference system. Such an estimate resolves, in principle, the ‘ambiguity’ of a traditional crust-fixed LVD by linking it with a particular equipotential surface of Earth’s gravity field under the presence of an external geopotential model. The aim of this paper is to study the estimation scheme that can be followed for solving the aforementioned problem based on the joint inversion of co-located GPS and leveling heights in conjunction with a fixed Earth gravity field model. Several case studies with real data are also presented that provide, for the first time, precise estimates of the LVD offsets for a number of Hellenic islands across the Aegean and Ionian Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amos MJ, Featherstone WE (2009) Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations. J Geod 83: 57–68

    Article  Google Scholar 

  • Antonopoulos A (1999) Models of height systems of reference and their applications to the Hellenic area (in Greek). PhD Thesis, School of Rural and Surveying Engineering, National Technical University of Athens, Greece

  • Ardalan A, Grafarend E, Kakkuri J (2002) National height datum, the Gauss-Listing geoid level valuew o and its time variation \({\dot{w}_o }\) (Baltic Sea Level Project: epochs 1990.8, 1993.8, 1997.4). J Geod 76: 1–28

    Article  Google Scholar 

  • Ardalan A, Safari A (2005) Global height datum unification: a new approach in gravity potential space. J Geod 79: 512–523

    Article  Google Scholar 

  • Ardalan A, Karimi R, Poutanen M (2010) A bias-free geodetic boundary value problem approach to height datum unification. J Geod 84: 123–134

    Article  Google Scholar 

  • Balasubramania N (1994) Definition and realization of a global vertical datum. Department of Geodetic Science, The Ohio State University, OSU Report No. 427, Columbus

  • Burša M, Kouba J, Kumar M, Müller A, Radĕj K, True SA, Vatrt V, Vojtišková M (1999) Geoidal geopotential and world height system. Stud Geophys Geod 43: 327–337

    Article  Google Scholar 

  • Burša M, Kouba J, Müller A, Radĕj K, True SA, Vatrt V, Vojtišková M (2001) Determination of geopotential differences between local vertical datums and realization of a world height system. Stud Geophys Geod 45: 127–132

    Article  Google Scholar 

  • Burša M, Groten E, Kenyon S, Kouba J, Radĕj K, Vatrt V, Vojtišková M (2002) Earth’s dimension specified by geoidal geopotential. Stud Geophys Geod 46: 1–8

    Google Scholar 

  • Burša M, Kenyon S, Kouba J, Šima Z, Vatrt V, Vojtišková M (2004) A global vertical reference frame based on four regional vertical datums. Stud Geophys Geod 48: 493–502

    Article  Google Scholar 

  • Burša M, Kenyon S, Kouba J, Šima Z, Vatrt V, Vojtĕch V, Vojtišková M (2007) The geopotential value W o for specifying the relativistic atomic time scale and a global vertical reference system. J Geod 81: 103–110

    Article  Google Scholar 

  • Colombo OL (1980) A world vertical network. Department of Geodetic Science, The Ohio State University, OSU Report No. 296, Columbus

  • Ekman M (1989) Impacts of geodynamic phenomena on systems for height and gravity. Bull Geod 63: 281–296

    Article  Google Scholar 

  • Fenoglio-Marc L (1996) Sea surface determination with respect to European vertical datums. Deutsche Geodätische Kommission, Reihe C, Heft Nr. 464. Germany, Munich

    Google Scholar 

  • Flury J, Rummel R (2009) On the geoid-quasigeoid separation in mountainous areas. J Geod 83: 829–847

    Article  Google Scholar 

  • Fotopoulos G (2003) An analysis on the optimal combination of geoid, orthometric and ellipsoidal height data. PhD Thesis, UCGE Report no. 20185, Department of Geomatics Engineering, University of Calgary, Calgary

  • Grafarend E, Ardalan A (1997) W o: an estimate in the Finnish Height Datum N60, epoch 1993.4, from twenty-five GPS points of the Baltic Sea Level Project. J Geod 71: 673–679

    Article  Google Scholar 

  • Hajela DP (1983) Accuracy estimates of gravity potential differences between Western Europe and United States through LAGEOS satellite laser ranging network. Department of Geodetic Science, The Ohio State University, OSU Report No. 345, Columbus

  • Heck B (2004) Problems in the definition of vertical reference frames. IAG Symp Series, vol 127. Springer, Berlin, pp 164–173

    Google Scholar 

  • Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. IAG Symp Series, vol 104. Springer, Berlin, pp 116–128

    Google Scholar 

  • Heiskanen W, Moritz H (1967) Physical geodesy. WH Freeman, San Francisco

    Google Scholar 

  • Hipkin R (2003) Defining the geoid by WW oU o: theory and practice of a modern height system. In: Tziavos IN (eds) Proceedings of the 3rd meeting of the International Gravity and Geoid Commission. Ziti Editions, Thessaloniki, pp 367–377

    Google Scholar 

  • Holmes SA, Pavlis NK (2006) A Fortran program for very-high-degree harmonic synthesis (version 05/01/2006). Program manual and software code available at http://earth-info.nima.mil/GandG/wgs84/gravitymod/egm2008/

  • Jekeli C (2000) Heights, the geopotential and vertical datums. Department of Civil, Environmental Engineering and Geodetic Science, The Ohio State University, OSU Report No. 459, Columbus

  • Jekeli C, Dumrongchai P (2003) On monitoring a vertical datum with satellite altimetry and water-level gauge data on large lakes. J Geod 77: 447–453

    Article  Google Scholar 

  • Kasenda A, Kearsley AHW (2003) Offsets between some local height datums in the South East Asia Region. In: Tziavos IN (eds) Proceedings of the 3rd meeting of the International Gravity and Geoid Commission. Ziti Editions, Thessaloniki, pp 384–388

    Google Scholar 

  • Kingdon R, Vaniček P, Santos M, Ellmann A, Tenzer R (2005) Toward an improved orthometric height system for Canada. Geomatica 59(3): 241–249

    Google Scholar 

  • Kotsakis C (2008) Transforming ellipsoidal heights and geoid undulations between different geodetic reference frames. J Geod 82: 249–260

    Article  Google Scholar 

  • Kotsakis C, Katsambalos K (2010) Quality analysis of global geopotential models at 1542 GPS/levelling benchmarks over the Hellenic mainland. Surv Rev 42(318): 327–344

    Article  Google Scholar 

  • Lehmann R (2000) Altimetry-gravimetry problems with free vertical datums. J Geod 74: 327–334

    Article  Google Scholar 

  • Mäkinen J, Ihde J (2009) The permanent tide in height systems. IAG Symp Series, vol 133. Springer, Berlin, pp 81–87

    Google Scholar 

  • Moritz H (1992) Geodetic reference system 1980. Bull Geod 62(2): 187–192

    Article  Google Scholar 

  • Mylona-Kotrogianni H (1989) The 1st order levelling network of Greece (in Greek). Bull Hellenic Mil Geogr Serv 50(138): 1–26

    Google Scholar 

  • Nahavandchi H, Sjöberg LE (1998) Unification of vertical datums by GPS and gravimetric geoid models using modified Stokes formula. Mar Geod 21: 261–273

    Article  Google Scholar 

  • Pan M, Sjöberg LE (1998) Unification of vertical datums by GPS and gravimetric geoid models with application to Fennoscandia. J Geod 72: 64–70

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth Gravitational Model to degree 2160: EGM2008. Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, April 13–18, 2008

  • Petit G, Luzum B (eds) (2010) IERS Conventions 2010. International Earth Rotation and Reference Systems Service, IERS Technical Note No. 36, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main

  • Poutanen M, Vermeer M, Mäkinen J (1996) The permanent tide in GPS positioning. J Geod 70: 499–504

    Google Scholar 

  • Rapp RH (1994) Separation between reference surfaces of selected vertical datums. Bull Geod 69: 26–31

    Article  Google Scholar 

  • Rapp RH (1997) Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J Geod 71: 282–289

    Article  Google Scholar 

  • Rapp RH, Balasubramania N (1992) A conceptual formulation of a world height system. Department of Geodetic Science, The Ohio State University, OSU Report No. 421, Columbus

  • Rummel R, Teunissen P (1988) Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull Geod 62(4): 477–498

    Article  Google Scholar 

  • Sacerdote F, Sansò F (2004) Geodetic boundary-value problems and the height datum problem. IAG Symp Series, vol 127. Springer, Berlin, pp 174–178

    Google Scholar 

  • Sadiq M, Tscherning CC, Ahmad Z (2009) An estimation of the height system bias parameter N o using least-squares collocation from observed gravity and GPS-leveling data. Stud Geophys Geod 53: 375–388

    Article  Google Scholar 

  • Sansò F, Usai S (1995) Height datum and local geodetic datum in the theory of geodetic boundary value problems. AVN 8–9: 343–385

    Google Scholar 

  • Sansò F, Venuti G (2002) The height datum/geodetic datum problem. Geophys J Int 149: 768–775

    Article  Google Scholar 

  • Santos M, Vaniček P, Featherstone WE, Kingdon R, Ellmann A, Martin B-A, Kuhn M, Tenzer R (2006) The relation between rigorous and Helmert’s definitions of orthometric heights. J Geod 80: 691–704

    Article  Google Scholar 

  • Smith DA (1998) There is no such thing as ‘the’ EGM96 geoid: subtle points on the use of a global geopotential model. Int Geoid Serv Bull 8: 17–27

    Google Scholar 

  • Takos I (1989) New adjustment of the national geodetic networks in Greece (in Greek). Bull Hellenic Mil Geogr Serv 49(136): 19–93

    Google Scholar 

  • Tenzer R, Vaniček P, Santos M, Featherstone WE, Kuhn M (2005) The rigorous determination of orthometric heights. J Geod 79: 82–92

    Article  Google Scholar 

  • Tenzer R, Vatrt V, Abdalla A, Dayoub N (2011) Assessment of the LVD offsets for the normal-orthometric heights and different permanent tide systems. Appl Geomat 3(1): 1–8

    Article  Google Scholar 

  • van Onselen K (1997) Quality investigation of vertical datum connection. Delft Institute for Earth-Oriented Space Research, DEOS Report No. 97.3, Delft

  • Xu P (1992) A quality investigation of global vertical datum connection. Geophys J Int 110: 361–370

    Article  Google Scholar 

  • Xu P, Rummel R (1991) A quality investigation of global vertical datum connection. Netherlands Geodetic Commission, Publications on Geodesy (new series), Report no. 34, Delft

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kotsakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsakis, C., Katsambalos, K. & Ampatzidis, D. Estimation of the zero-height geopotential level W LVD o in a local vertical datum from inversion of co-located GPS, leveling and geoid heights: a case study in the Hellenic islands. J Geod 86, 423–439 (2012). https://doi.org/10.1007/s00190-011-0530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0530-7

Keywords

Navigation